精英家教网 > 高中数学 > 题目详情
6.行列式$|{\begin{array}{l}{12cos(\;\frac{π}{2}+x)}&{tanx}\\{5cosx}&{\;cot(\;π-x)}\end{array}}|$的最大值为13.

分析 利用二阶行列式展开式法则和三角函数性质及诱导公式求解.

解答 解:$|{\begin{array}{l}{12cos(\;\frac{π}{2}+x)}&{tanx}\\{5cosx}&{\;cot(\;π-x)}\end{array}}|$
=12cos($\frac{π}{2}+x$)cot(π-x)-5cosxtanx
=12(-sinx)(-cotx)-5sinx
=12cosx-5sinx
=13sin(x+θ)≤13,
∴行列式$|{\begin{array}{l}{12cos(\;\frac{π}{2}+x)}&{tanx}\\{5cosx}&{\;cot(\;π-x)}\end{array}}|$的最大值为13.
故答案为:13.

点评 本题考查二阶行列式的最大值的求法,是基础题,解题时要认真审题,注意二阶行列式展开式法则和三角函数性质及诱导公式的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.已知集合$A=\{y|y=sinx,0<x<\frac{π}{2}\},B=\{x|y={log_2}x\}$,则A∩B=(  )
A.{x|0<x<1}B.{x|-1<x<1}C.{x|-1<x<0}D.{x|x>0}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,有一块半径为2的半圆形纸片,计划剪裁成等腰梯形ABCD的形状,它的下底AB是⊙O的直径,上底CD的端点在圆周上,设CD=2x,梯形ABCD的周长为y.
(1)求出y关于x的函数f(x)的解析式;
(2)求y的最大值,并指出相应的x值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在△ABC中,内角A、B、C的对边分别是a、b、c,$cosA=\frac{2}{3},sin(A+C)=\sqrt{5}cosC$
(1)求sinC的值
(2)若$a=\sqrt{2}$,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.行列式$\left|\begin{array}{l}cos20°\\ sin20°\end{array}\right.\left.\begin{array}{l}sin40°\\ cos40°\end{array}\right|$的值是$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.椭圆$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{16}$=1内有两点A(2,2),B(3,0),P为椭圆上任意一点,则|PA|+$\frac{5}{3}$|PB|的最小值为(  )
A.$\frac{25}{3}$B.$\frac{25}{6}$C.4D.$\frac{19}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知正三棱柱ABC-A1B1C1的底面边长为a,侧棱长为$\sqrt{2}$a,M为A1B1的中点,求BC1与平面AMC1所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在极坐标系中,已知三点A(4,0)、$B(4,\frac{3π}{2})$、$C(ρ,\frac{π}{6})$.
(1)若A、B、C三点共线,求ρ的值;
(2)求过OAB三点的圆的极坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.抛物线x2=2y的焦点到其准线的距离是(  )
A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案