精英家教网 > 高中数学 > 题目详情

( (本小题满分12分) 如图,在直三棱柱ABC—A1B1C1中,

 .

(Ⅰ)若DAA1中点,求证:平面B1CD平面B1C1D

(Ⅱ)若二面角B1DCC1的大小为60°,求AD的长.

 

 

 

 

 

【答案】

Ⅰ)∵,∴

又由直三棱柱性质知,∴平面ACC1A1.∴……①   ……………3分

D为中点可知,

……②………………………5分

由①②可知平面B1C1D,又平面B1CD,故平面平面B1C1D. … 6分

(Ⅱ)由(1)可知平面ACC1A1,如图,在面ACC1A1内过C1,交CD或延长线或于E,连EB1,由三垂线定理可知为二面角B1DC—C1的平面角,………………8分

B1C1=2知,,          …………………10分

AD=x,则的面积为1,∴

解得,即                  ……………………………………12分

 

【解析】略

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(文) (本小题满分12分已知函数y=4-2
3
sinx•cosx-2sin2x(x∈R)

(1)求函数的值域和最小正周期;
(2)求函数的递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•自贡三模)(本小题满分12分>
设平面直角坐标中,O为原点,N为动点,|
ON
|=6,
ON
=
5
OM
.过点M作MM1丄y轴于M1,过N作NN1⊥x轴于点N1
OT
=
M1M
+
N1N
,记点T的轨迹为曲线C.
(I)求曲线C的方程:
(H)已知直线L与双曲线C:5x2-y2=36的右支相交于P、Q两点(其中点P在第-象限).线段OP交轨迹C于A,若
OP
=3
OA
,S△PAQ=-26tan∠PAQ求直线L的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分12分)已知关于的一元二次函数  (Ⅰ)设集合P={1,2, 3}和Q={-1,1,2,3,4},分别从集合P和Q中随机取一个数作为,求函数在区间[上是增函数的概率;(Ⅱ)设点()是区域内的随机点,求函数上是增函数的概率。

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分12分)已知函数,且。①求的最大值及最小值;②求的在定义域上的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分12分) 一几何体的三视图如图所示,,A1A=,AB=,AC=2,A1C1=1,在线段上且=.

(I)证明:平面⊥平面

(II)求二面角的余弦值.

查看答案和解析>>

同步练习册答案