精英家教网 > 高中数学 > 题目详情
2.已知f(x)是定义在R上的不恒为0的函数,且对于任意的x,y∈R,有f(x•y)=xf(y)+yf(x).
(1)求f(0),f(1)的值;
(2)判断函数f(x)的奇偶性,并证明你的结论.

分析 (1)令x=y=0,再令x=y=1,从而求f(0),f(1)的值;
(2)可判断f(x)在R上是奇函数,从而证明即可.

解答 解:(1)令x=y=0得,
f(0)=0f(0)+0f(0)=0,
令x=y=1得,
f(1)=f(1)+f(1),故f(1)=0;
(2)f(x)在R上是奇函数,证明如下,
令x=y=-1得,
f(1)=(-1)f(-1)+(-1)f(-1),
故f(-1)=0;
令y=-1,则:
f(-x)=xf(-1)+(-1)f(x);
故f(-x)=-f(x);
故f(x)是奇函数.

点评 本题考查了抽象函数的应用及函数的性质的判断与证明.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.若定义域为R的奇函数f(x)满足f(x+2)=f(x),且在(-3,-2)上单调递减,则(  )
A.f($\frac{3}{4}$)<f($\frac{1}{2}$)B.f($\frac{3}{4}$)>f($\frac{1}{2}$)
C.f($\frac{3}{4}$)=f($\frac{1}{2}$)D.f($\frac{3}{4}$)与f($\frac{1}{2}$)的大小不确定

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.不等式组$\left\{\begin{array}{l}{2x-1>1}\\{5-x≥2}\end{array}\right.$的解集是(  )
A.(-1,5)B.(3,5)C.(-1,1)D.(1,3]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知A(3,-1),B(5,-2),点P在直线x+y=0上,若使|PA|+|PB|取最小值,则点P的坐标是(  )
A.(1,-1)B.(-1,1)C.($\frac{13}{5}$,-$\frac{13}{5}$)D.(-2,2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设二次函数f(x)=ax2-(b-5)x-a-ab,不等式f(x)>0的解集是(-4,2).
(1)求f(x);
(2)当函数f(x)的定义域是[t,t+2]时,求函数f(x)的最大值g(t).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.在直角坐标系内,O为原点,点A,B坐标分别为(1,0),(0,2),当实数p,q满足$\frac{1}{p}$+$\frac{1}{q}$=1时,若点C,D分别在x轴,y轴上,且$\overrightarrow{OC}$=p$\overrightarrow{OA}$,$\overrightarrow{OD}$=q$\overrightarrow{OB}$,则A线CD恒过一个定点,这个定点的坐标为(1,1).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若lga,lgb是方程2x2-4x+1=0的两个根,则(lg$\frac{b}{a}$)2=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在△ABC中,角A,B,C所对的边分别为a,b,c,a(cosC+$\frac{\sqrt{3}}{3}$sinC)=b.
(1)求角A的大小;
(2)若△ABC的周长为20,面积为10$\sqrt{3}$,求△ABC的三边长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设函数f(x)=x|x-a|+b
(1)求证:当f(x)为奇函数时a2+b2=0
(2)设常数b<2$\sqrt{2}$-3,且对任意x∈[0,1],f(x)<0恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案