精英家教网 > 高中数学 > 题目详情

已知梯形ABCD中,AD∥BC,∠ABC =∠BAD =,AB=BC=2AD=4,E、F分别是AB、CD上的点,EF∥BC,AE = x,G是BC的中点。沿EF将梯形ABCD翻折,使平面AEFD⊥平面EBCF (如图) .

(1) 当x=2时,求证:BD⊥EG ;

(2) 若以F、B、C、D为顶点的三棱锥的体积记为f(x),求f(x)的最大值;

(3) 当 f(x)取得最大值时,求二面角D-BF-C的余弦值.

(2)  (3)


解析:

)作DH⊥EF于H,连BH,GH,……………1分

由平面平面知:DH⊥平面EBCF,

而EG平面EBCF,故EG⊥DH。

又四边形BGHE为正方形,∴EG⊥BH,

BHDH=H,故EG⊥平面DBH,………………… 3分

而BD平面DBH,∴ EG⊥BD。………………… 4分

(或者直接利用三垂线定理得出结果)

(2)∵AD∥面BFC,

所以 VA-BFC=··4·(4-x)·x

………………………………………………………………………7分

有最大值为。…………………………………………………………8分

(3)(法一)设平面DBF的法向量为,∵AE=2, B(2,0,0),D(0,2,2),

F(0,3,0),∴(-2,2,2), ………………………………9分

x=3,则y=2,z=1,∴ 

 面BCF的一个法向量为         ……………………………12分

则cos<>=  …………………………………………13分

由于所求二面角D-BF-C的平面角为钝角,所以此二面角的余弦值为- …………………14分

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,已知梯形ABCD中|AB|=2|CD|,点E分有向线段
.
AC
所成的比为λ,双曲线过C、D、E三点,且以A、B为焦点,当
2
3
≤λ≤
3
4
时,求双曲线离心率c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网精英家教网已知梯形ABCD中,AD∥BC,∠ABC=∠BAD=
π2
,AB=BC=2AD=4,E、F分别是AB、CD上的点,EF∥BC,AE=x,G是BC的中点.沿EF将梯形ABCD翻折,使平面AEFD⊥平面EBCF (如图).
(1)当x=2时,求证:BD⊥EG;
(2)若以F、B、C、D为顶点的三棱锥的体积记为f(x),求f(x)的最大值;
(3)当f(x)取得最大值时,求二面角D-BF-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网精英家教网已知梯形ABCD中,AD∥BC,∠ABC=∠BAD=
π2
,AB=BC=2AD=4,E、F分别是AB、CD上的点,EF∥BC,沿EF将梯形ABCD翻折,使AE⊥平面EBCF(如图).设AE=x,四面体DFBC的体积记为f(x).
(1)写出f(x)表达式,并求f(x)的最大值;
(2)当x=2时,求异面直线AB与DF所成角θ的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知梯形ABCD中,AD∥BC,∠ABC=∠BAD=
π2
,AB=BC=2AD=4,E、F分别是AB、CD上的点,EF∥BC,AE=x.沿EF将梯形ABCD翻折,使平面AEFD⊥平面EBCF(如图).G是BC的中点,以F、B、C、D为顶点的三棱锥的体积记为f(x).
(1)当x=2时,求证:BD⊥EG;
(2)求f(x)的最大值;
(3)当f(x)取得最大值时,求异面直线AE与BD所成的角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知梯形ABCD中,AD∥BC,∠ABC=90°,AD=a,BC=2a,∠DCB=60°,在平面ABCD内,过C作l⊥CB,以l为轴将梯形ABCD旋转一周,求所得旋转体的表面积及体积.

查看答案和解析>>

同步练习册答案