精英家教网 > 高中数学 > 题目详情
13.(1)解关于x的不等式:x2-(a2+2a+1)x+2a(a2+1)<0.
(2)若(1)中的不等式的解包含满足2<x<5的所有实数,求a的取值范围.

分析 (1)通过因式分解解不等式即可;(2)根据(1)中的不等式的解包含满足2<x<5的所有实数,得到不等式组,解出即可.

解答 解:(1)∵x2-(a2+2a+1)x+2a(a2+1)<0,
∴(x-2a)(x-a2-1)<0,
∴2a<x<a2+1;
(2)若(1)中的不等式的解包含满足2<x<5的所有实数,
则$\left\{\begin{array}{l}{2a≤2}\\{{a}^{2}+1≥5}\end{array}\right.$,解得:a=2或a≤-2.

点评 本题考查了解不等式、不等式组问题,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.给出下列四个命题:
①15秒内,通过某十字路口的汽车的数量;②在一段时间内,某侯车室内侯车的旅客人数;③掷骰子一次向上的点数;④一个剧场共有三个出口,散场后某一出口退场的人数.其中是随机变量的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.线段|AB|=4,|PA|+|PB|=6,M是AB中点,当点P在同一平面运动时,PM长度的最大值3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=$\sqrt{{x}^{2}-6x+9}$+$\sqrt{{x}^{2}+2x+1}$
(1)作出y=f(x)的图象;
(2)解不等式f(x)≤6;
(3)设函数g(x)=k(x-3),k∈R,若f(x)>g(x)对任意的x∈R都成立,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,抛物线y2=2px(p>0),F为抛物线的焦点,A,B是抛物线上互异的两点,直线AB与x轴不垂直,线段AB的中垂线交x轴于D(a,0),m=|$\overrightarrow{AF}$|+|$\overrightarrow{BF}$|.
(1)证明:a是p,m的等差中项;
(2)若m=3p,l为平行于y轴的直线,且l被以AD为直径的动圆所截得的弦长恒为定值,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知正数x,y满足$\frac{1}{x}$+$\frac{1}{y}$=1,则$\frac{4x}{x-1}$+$\frac{9y}{y-1}$的最小值为(  )
A.26B.25C.24D.23

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.求函数y=x+$\sqrt{x(2-x)}$的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.用列举法表示下列各性质确定的集合.
(1)大于3,并且小于10的自然数;
(2)小于100并且可化为自然数平方的数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知M={x|x>1},N={x|x>a}.
(1)若M⊆N,则a的取值范围是a≤1;
(2)若N?M,则a的取值范围是a>1.

查看答案和解析>>

同步练习册答案