精英家教网 > 高中数学 > 题目详情
若A={x|-3≤x≤4},B={x|2m-1≤x≤m+1},当BA时,求实数m的取值范围.

解:当B=时,2m-1>m+1,得m>2,满足BA,

当B≠时,则有得-1≤m≤2.

综上可知,满足条件的实数m的取值范围是m≥-1.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

对于定义在D上的函数y=f(x),若同时满足.
①存在闭区间[a,b]⊆D,使得任取x1∈[a,b],都有f(x1)=c (c是常数);
②对于D内任意x2,当x2∉[a,b]时总有f(x2)>c称f(x)为“平底型”函数.
(1)(理)判断f1(x)=|x-1|+|x-2|,f2(x)=x+|x-2|是否是“平底型”函数?简要说明理由;
(文)判断f1(x)=|x-1|+|x-2|,f2(x)=x-|x-3|是否是“平底型”函数?简要说明理由;
(2)(理)设f(x)是(1)中的“平底型”函数,若|t-k|+|t+k|≥|k|•f(x),k∈R且k≠0,对一切t∈R恒成立,求实数x的范围;
(文)设f(x)是(1)中的“平底型”函数,若|t-1|+|t+1|≥f(x),对一切t∈R恒成立,求实数x的范围;
(3)(理)若F(x)=mx+
x2+2x+n
,x∈[-2,+∞)是“平底型”函数,求m和n的值;
(文)若F(x)=m|x-1|+n|x-2|是“平底型”函数,求m和n满足的条件.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=ax2+2bx+4c(a,b,c∈R)
(1)若a+c=0,f(x)在[-2,2]上的最大值为
2
3
,最小值为-
1
2
,求证:|
b
a
|≤2

(2)当b=4,c=
3
4
时,对于给定的负数a,有一个最大的正数m(a),使得x∈[0,m(a)]时都有|f(x)|≤5,问a为何值时,m(a)最大,并求这个最大值m(a),证明你的结论.
(3)若f(x)同时满足下列条件:①a>0;②当|x|≤2时,有|f(x)|≤2;③当|x|≤1时,f(x)最大值为2,求f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+ax-lnx,a∈R.
(Ⅰ)若a=1,求曲线f(x)在点(1,f(1))处的切线方程;
(Ⅱ)令g(x)=f(x)-x2,是否存在实数a,当x∈(0,e](e是自然常数)时,函数g(x)的最小值是3,若存在,求出a的值;若不存在,说明理由;
(Ⅲ)当x∈(0,e]时,证明:e2x2-
52
x>(x+1)lnx

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|3≤x≤6},B={x|2<x<9}.
(1)分别求?R(A∩B),(?RB)∩A
(2)已知C={x|a<x<a+1},若C⊆B,求实数a的取值集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|3≤x<6},B={x|2<x<9}.
(1)求:CR(A∩B);
(2)已知C={x|a<x<a+1},若C⊆B,求实数a的取值集合.

查看答案和解析>>

同步练习册答案