已知二次函数f(x)=ax2+bx+c(a,b,c均为实常数,且a≠0),满足条件f(0)=f(2)=0,且方程f(x)=2x有两个相等的实数根.
(1)求函数f(x)的解析式;
(2)试确定一个区间P,使得f(x)在P内单调递减且不等式f(x)≥0在P内恒成立;
(3)是否存在这样的实数m、n,满足m<n,使得f(x)在区间[m,n]内的取值范围恰好是[4m,4n]?如果存在,试求出m、n的值;如果不存在,请说明理由.
解:(1)由f(2)=f(0)=0可知,4a+2b+c=0,c=0,
又f(x)=2x有两个相等实根,故(b-2)
2-4ac=0,
可解得a=-1,b=2,c=0,
故f(x)的解析式为:f(x)=-x
2+2x;
(2)由(1)可知f(x)=-x
2+2x,
其图象为开口向下的抛物线,对称轴为x=1,
故可取区间P=[1,2],满足题意;
(3)假设存在实数m、n(m<n),使f(x)的定义域和值域分别为[m,n]和42m,4n],
由(1)可知f(x)=-x
2+2x=-(x-1)2+1≤1,故4n≤1,故m<n≤
,
又函数f(x)的对称轴为x=1,抛物线的开口向下,
故f(x)在区间[m,n]单调递增,
则有f(m)=4m,f(n)=4n,即m,n为方程-x
2+2x=4x的实根,
解得x=0或x=-2,结合m<n可得m=-2,n=0,
故存在m=-2,n=0符合题意.
分析:(1)由题意可得4a+2b+c=0,c=0,(b-2)
2-4ac=0,联合解之即可;
(2)分析函数的图象,可知区间P=[1,2],满足题意;(3)假设存在实数m、n(m<n)满足题意,配方可得m<n≤
,进而可得函数在区间[m,n]单调递增,则有f(m)=4m,f(n)=4n,解之即可.
点评:本题考查二次函数的性质,涉及函数的单调性和存在性问题,属中档题.