精英家教网 > 高中数学 > 题目详情
(2012•厦门模拟)已知函数f(x)=
1
3
a
x
3
 
+
1
2
a
x
2
 
-bx+b-1
在x=1处的切线与x轴平行,若函数f(x)的图象经过四个象限,则实数a的取值范围是
3
16
<a<
6
5
3
16
<a<
6
5
分析:求函数的极值,要使图象经过四个象限只要两极值符号不同即可.
解答:解:求导函数可得f′(x)=ax2+ax-b
∵函数f(x)=
1
3
a
x
3
 
+
1
2
a
x
2
 
-bx+b-1
在x=1处的切线与x轴平行
∴f′(1)=0
∴2a-b=0
∴b=2a
∴f′(x)=ax2+ax-2a=a(x+2)(x-1),f(x)=
1
3
a
x
3
 
+
1
2
a
x
2
 
-2ax+2a-1

令f′(x)=a(x+2)(x-1)=0得x=-2或x=1
x∈(-∞,-2)时f′(x)的符号与x∈(-2,1)时f′(x)的符号相反,x∈(-2,1)时f′(x)的符号与x∈(1,+∞)时f′(x)的符号相反
∴函数在-2与1处取极值
∵图象经过四个象限
∴f(-2)•f(1)<0,即(
16a
3
-1
)(
5a
6
-1)<0
3
16
<a<
6
5

故答案为:
3
16
<a<
6
5
点评:本题考查导数知识的运用,考查导数的几何意义,考查函数的极值,利用两极值符号不同是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•厦门模拟)函数f(x)=
x
3
 
-sinx+2
的图象(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•厦门模拟)设全集U={0,l,2,3,4,5},A={0,1},B={x|
x
2
 
-2x=0
},则A∩(CUB)=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•厦门模拟)函数y=
a
x
 
,y=sinax
(a>0且a≠1)在同一个直角坐标系中的图象可以是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•厦门模拟)“2<x<3”是“x(x-5)<0”的(  )

查看答案和解析>>

同步练习册答案