精英家教网 > 高中数学 > 题目详情
12.已知命题p:?x∈R,x2+3x=4,则¬p是?x∈R,x2+3x≠4.

分析 由已知中的原命题,结合特称命题否定的定义,可得答案.

解答 解:∵命题p:?x∈R,x2+3x=4,
∴命题¬p:?x∈R,x2+3x≠4,
故答案为:?x∈R,x2+3x≠4.

点评 本题考查的知识点是特称命题的否定,难度不大,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=$\frac{a}{3}$x3-$\frac{a+1}{2}$x2+x+b,其中a,b∈R.
(Ⅰ)若函数y=f(x)的极小值为4,且在点x=$\frac{1}{3}$处取到极大值,求函数f(x)的解析式;
(Ⅱ)当a>0时,讨论函数f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数$f(x)={sin^2}ωx+\sqrt{3}sinωxcosωx-\frac{1}{2}(ω>0)$的最小正周期为π.
(1)求ω的值;
(2)将函数y=f(x)的图象向左平移$\frac{π}{6}$个单位后,得到函数y=g(x)的图象,求函数g(x)在区间[0,π]上的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图所示,已知ABCD是直角梯形,∠BAD=90°,AD∥BC,AD=2AB=2BC,PA⊥面ABCD.
(I)证明:PC⊥CD;
(II)在线段PA上确定一点E,使得BE∥面PCD.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.我们知道:在平面内,点(x0,y0)到直线Ax+By+C=0的距离公式为d=$\frac{{|{A{x_0}+B{y_0}+C}|}}{{\sqrt{{A^2}+{B^2}}}}$,通过类比的方法,可求得:在空间中,点(2,4,1)到直线x+2y+2z+3=0的距离为(  )
A.3B.5C.$\frac{{5\sqrt{21}}}{7}$D.$3\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若x>0,y>0,x+xy=2,则x+y的最小值是2$\sqrt{2}$-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知α,β是两个不重合的平面,m,n是两条不同的直线,则下列命题中正确的是(  )
A.若m∥α,m∥β,则α∥βB.若m∥n,m∥α,则n∥α
C.若α⊥β,m⊥α,n⊥β,则m⊥nD.若α⊥β,m⊥α,n∥β,则m∥n

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.过点P(4,6)引直线l分别交x,y轴正半轴于A、B两点,当△OAB面积最小时,直线l的方程是3x+2y-24=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知a=log2.10.3,b=log0.20.3,c=0.2-3.1,则a,b,c的大小关系(  )
A.a<b<cB.a<c<bC.c<a<bD.c<b<a

查看答案和解析>>

同步练习册答案