精英家教网 > 高中数学 > 题目详情
17.若x>0,y>0,x+xy=2,则x+y的最小值是2$\sqrt{2}$-1.

分析 由x>0,y>0,x+xy=2,可得y=$\frac{2}{x}$-1,即x+y=x+$\frac{2}{x}$-1,利用基本不等式的性质即可得出.

解答 解:∵x>0,y>0,x+xy=2,
∴y=$\frac{2}{x}$-1,
∴x+y=x+$\frac{2}{x}$-1$≥2\sqrt{x•\frac{2}{x}}$-1=2$\sqrt{2}$-1,当且仅当x=$\sqrt{2}$时取等号.
故答案为:2$\sqrt{2}$-1.

点评 本题考查了基本不等式的性质,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=ax3+bx,且函数y=f(x)-$\frac{3}{2}$x2在x=1和x=2处取得极值
(1)求a,b的值
(2)设g(x)=x(lnx-1),若对任意x1∈R,存在x2∈(0,+∞),使f′(x1)-g′(x2)=1,则x22-x12是否存在最小值?若存在,求出最小值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.将函数f(x)=sin(2x+θ)(-$\frac{π}{2}$<θ<$\frac{π}{2}$)的图象向右平移φ(0<φ<π)个单位长度后得到函数g(x)的图象,若f(x),g(x)的图象都经过点P(0,$\frac{\sqrt{3}}{2}$),则φ的值为(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2}{3}$πD.$\frac{5}{6}$π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设Sn是等差数列{an}的前n项和,且a3=S3=3,则a4+a5=(  )
A.12B.9C.6D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知命题p:?x∈R,x2+3x=4,则¬p是?x∈R,x2+3x≠4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.在三棱锥ABC-A1B1C1中,侧棱A1A⊥底面ABC,AC=1,A1A=2,∠BAC=90°,若直线AB1与直线A1C的夹角的余弦值是$\frac{4}{5}$,则棱AB的长度是1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若函数f(x)=loga(2x2-x)(a>0,且a≠1)在区间($\frac{1}{2}$,1)内恒有f(x)<0,则函数f(x)的单调递增区间是(  )
A.(-∞,0)B.(-∞,$\frac{1}{4}$)C.($\frac{1}{2}$,+∞)D.($\frac{1}{4}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.设F为抛物线C:y=$\frac{1}{4}$x2的焦点,曲线y=$\frac{k}{x}$(k>0)与C交于点P,PF⊥y轴,则k=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.定义在R上的偶函数f(x)满足f(2+x)=f(x),且在[-3,-2]上是减函数,若A、B是锐角三角形ABC的两个内角,则下列各式一定成立的是(  )
A.f(sinA)<f(cosB)B.f(sinA)>f(cosB)C.f(sinA)>f(sinB)D.f(cosA)>f(cosB)

查看答案和解析>>

同步练习册答案