| A. | f(sinA)<f(cosB) | B. | f(sinA)>f(cosB) | C. | f(sinA)>f(sinB) | D. | f(cosA)>f(cosB) |
分析 由f(x+2)=f(x)求出函数f(x)的周期,由周期性和条件可得f(x)在[-1,0]上单调性,由偶函数的单调性得到f(x)在[0,1]上的单调性,根据锐角三角形的条件、诱导公式、正弦函数的单调性判断出sinA和cosB大小,根据f(x)的单调性得到答案.
解答 解:由f(x+2)=f(x)得,函数f(x)的周期为2,
因为f(x)在[-3,-2]上为减函数,所以f(x)在[-1,0]上为减函数,
因为f(x)为偶函数,所以f(x)在[0,1]上为单调增函数.
因为在锐角三角形中,π-A-B<$\frac{π}{2}$,
所以A+B>$\frac{π}{2}$,即$\frac{π}{2}$-B<A,
因为α,β是锐角,所以0<$\frac{π}{2}$-B<A<$\frac{π}{2}$,
所以sinA>sin($\frac{π}{2}$-B)=cosB,
因为f(x)在[0,1]上为单调增函数.
所以f(sinA)>f(cosB),
故选B.
点评 本题考查偶函数与函数单调性的关系,正弦函数的单调性,诱导公式,以及函数周期性与单调性的应用,考查转化思想,化简、变形能力.
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 0 | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a<b<c | B. | a<c<b | C. | c<a<b | D. | c<b<a |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com