分析 (Ⅰ)直接在三角形中利用三角函数可以表示DC、OB的长;
(Ⅱ)S=BC×CD,求出相应函数,再利用导数方法研究函数的最大值.
解答 解:(Ⅰ)在△ODC中DC=10sinθ,在△OAB中,OB=10$\sqrt{3}$sinθ;
(Ⅱ)在△ODC中OC=10cosθ,从而S=BC×CD=100(cosθsinθ-$\sqrt{3}$sin2θ)(0<θ<$\frac{π}{6}$)
由S′=100(-sin2θ+cos2θ-2$\sqrt{3}$sinθcosθ)=0得tan2θ=$\frac{\sqrt{3}}{3}$,
由0<θ<$\frac{π}{6}$,得θ=$\frac{π}{12}$,易得θ=$\frac{π}{12}$时,S的最大值为100(1-$\frac{\sqrt{3}}{2}$)≈13.4.
此人布置1m2的宣传区域需要花费40元,
∴布置此矩形宣传栏最多要花费13.4×40=536元钱.
点评 解决实际问题的关键在于建立数学模型和目标函数,把“问题情境”译为数学语言,找出问题的主要关系,并把问题的主要关系抽象成数学问题,在数学领域寻找适当的方法解决,再返回到实际问题中加以说明.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f(sinA)<f(cosB) | B. | f(sinA)>f(cosB) | C. | f(sinA)>f(sinB) | D. | f(cosA)>f(cosB) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $y={x^{\frac{1}{2}}}$ | B. | y=x2 | C. | y=x3 | D. | y=x-1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f(x)=$\frac{1}{x}$ | B. | f(x)=-x2 | C. | f(x)=-tanx | D. | f(x)=|sinx| |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{y}^{2}}{9}$-$\frac{{x}^{2}}{5}$=1 | B. | $\frac{{x}^{2}}{13}$-$\frac{{y}^{2}}{13}$=1 | C. | $\frac{{y}^{2}}{5}$-$\frac{{x}^{2}}{5}$=1 | D. | $\frac{{y}^{2}}{13}$-$\frac{{x}^{2}}{13}$=1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | y=$\sqrt{3}$(x+4) | B. | y=$\frac{\sqrt{3}}{3}$(x+4) | C. | y=$\frac{\sqrt{2}}{2}$(x+4) | D. | y=$\sqrt{2}$(x+4) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com