【题目】一个化肥厂生产甲、乙两种混合肥料,生产1车皮甲种肥料的主要原料是磷酸盐4吨,硝酸盐18吨;生产1车皮乙种肥料需要的主要原料是磷酸盐1吨,硝酸盐15吨.现库存磷酸盐10吨,硝酸盐66吨,在此基础上生产这两种混合肥料.如果生产1车皮甲种肥料产生的利润为12 000元,生产1车皮乙种肥料产生的利润为7 000元,那么可产生的最大利润是( )
A. 29 000元 B. 31 000元 C. 38 000元 D. 45 000元
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=(ax2+bx+c)ex(a>0)的导函数y=f′(x)的两个零点为-3和0.
(1)求f(x)的单调区间;
(2)若f(x)的极小值为-1,求f(x)的极大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】我们把日均收看体育节目的时间超过50分钟的观众称为“超级体育迷”,已知5名“超级体育迷”中有2名女性,若从中任选2名,则至少有1名女性的概率为( )
A. B.
C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本题分)
已知函数,若存在,使得,则称是函数的一个不动点,设二次函数.
(Ⅰ)当, 时,求函数的不动点.
(Ⅱ)若对于任意实数,函数恒有两个不同的不动点,求实数的取值范围.
(Ⅲ)在()的条件下,若函数的图象上, 两点的横坐标是函数的不动点,且直线是线段的垂直平分线,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系内,已知点及线段,在线段上任取一点,线段长度的最小值称为“点到线段的距离”,记为.
(1)设点,线段 ,求;
(2)设, , , ,线段,线段,若点满足,求关于的函数解析式,并写出该函数的值域.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了保护环境,发展低碳经济,某单位在国家科研部门的支持下,进行技术攻关,采用了新工艺,把二氧化碳转化为一种可利用的化工产品.已知该单位每月的处理量最少为400吨,最多为600吨,月处理成本y(元)与月处理量x(吨)之间的函数关系可近似地表示为:y=x2-200x+80000,且每处理一吨二氧化碳得到可利用的化工产品价值为100元.
该单位每月能否获利?如果获利,求出最大利润;如果不获利,则国家至少需要补贴多少元才能使该单位不亏损?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知中心在原点,焦点在轴上,离心率为的椭圆过点.
(1)求椭圆的方程;
(2)设椭圆与轴的非负半轴交于点,过点作互相垂直的两条直线,分别交椭圆于两点,连接,求的面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ax+ln x,其中a为常数.
(1)当a=-1时,求f(x)的单调递增区间.
(2)当0<-<e时,若f(x)在区间(0,e)上的最大值为-3,求a的值.
(3)当a=-1时,试推断方程|f(x)|=是否有实数根.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com