(本题满分12分)
![]()
如图,四棱锥P-ABCD的侧面PAD垂直于底面ABCD,∠ADC=∠BCD=
,PA=PD=AD=2BC=2,CD
,M在棱PC上,N是AD的中点,二面角M-BN-C为
.
(1)求
的值;
(2)求直线
与平面BMN所成角的大小.
(Ⅰ)作ME∥CD,ME∩PD=E.
∵∠ADC=∠BCD=90°,AD=2BC=2,N是AD的中点,∴BN⊥AD,
又平面PAD⊥平面ABCD,∴BN⊥平面PAD,
∴BN⊥NE,∠DNE为二面角M-BN-C的平面角,∠DNE=30°.……………3分
∵PA=PD=AD,∴∠PDN=60°,∴∠DEN=90°,∴DE=DP,
∴CM=CP,故=3.…………………………………………………………6分
(Ⅱ)连结BE,由(Ⅰ)的解答可知PE⊥平面BMN,则∠PBE为直线PB与平面BMN所成的角.连结PN,则PN⊥平面ABCD,从而PN⊥BN,
∴PB===,…………………………………………9分
又PE=PD=,∴sin∠PBE==.
所以直线PB与平面MBN所成的角为arcsin.………………………………12分
![]()
![]()
解法二:
(Ⅰ)建立如图所示的坐标系N—xyz,其中N(0,0,0),A(1,0,0),B(0,,0),C(-1,,0),D(-1,0,0),P(0,0,).
设=λ(λ>0),则M(,,),于是
=(0,,0),=(,,),………………………………3分
设n=(x,y,z)为面MBN的法向量,则·n=0,·n=0,
∴y=0,-λx+λy+z=0,取n=(,0,λ),
又m=(0,0,1)为面BNC的法向量,由二面角M-BN-C为30°,得[来源:ZXXK]
|cosám,nñ|===cos30°=,解得λ=3,
故=3.……………………………………………………………………………6分
(Ⅱ)由(Ⅰ),n=(,0,3)为面MBN的法向量,……………………………8分
设直线PB与平面MBN所成的角为θ,由=(0,,-),得
sinθ=|\o(PB,\s\up5(→________==,
所以直线PB与平面MBN所成的角为arcsin.………………………………12分
【解析】略
科目:高中数学 来源: 题型:
| π | 2 |
查看答案和解析>>
科目:高中数学 来源:2012-2013学年上海市金山区高三上学期期末考试数学试卷(解析版) 题型:解答题
(本题满分12分,第1小题6分,第2小题6分)
已知集合A={x| | x–a | < 2,xÎR
},B={x|
<1,xÎR }.
(1) 求A、B;
(2) 若
,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源:2012-2013学年安徽省高三10月月考理科数学试卷(解析版) 题型:解答题
(本题满分12分)
设函数
(
,
为常数),且方程
有两个实根为
.
(1)求
的解析式;
(2)证明:曲线
的图像是一个中心对称图形,并求其对称中心.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年重庆市高三第二次月考文科数学 题型:解答题
(本题满分12分,(Ⅰ)小问4分,(Ⅱ)小问6分,(Ⅲ)小问2分.)
如图所示,直二面角
中,四边形
是边长为
的正方形,
,
为
上的点,且
⊥平面![]()
(Ⅰ)求证:
⊥平面![]()
(Ⅱ)求二面角
的大小;
(Ⅲ)求点
到平面
的距离.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com