用数学归纳法证明:(3n+1)·7n-1能被9整除.(n∈N*)
证明:证明一个与n有关的式子f(n)能被一个数a(或一个代数式g(n)整除,主要是找到f(k+1)与f(k)的关系,设法找到式子f1(k),f2(k),使得f(k+1)=f(k)·f1(k)+Q·f2(k),就可证得命题成立. (1)当n=1时,原式=(3×1+1)·7-1=27,能被9整除,命题成立. (2)假设当n=k时,(3k+1)·7k-1能被9整除,当n=k+1时, [3(k+1)+1]·7k+1-1 =[21(k+1)+7]·7k-1 =[(3k+1)+(18k+27)]·7k-1 =[(3k+1)·7k-1]+9(2k+3)·7k ∵ [(3k+1)·7k-1]和9(2k+3)·7k都能被9整除 ∴ [(3k+1)·7k-1]+9(2k+3)·7k能被9整除 即[3(k+1)+1]·7k+1-1能被9整除 即当n=k+1时,命题成立 由(1)、(2)可知,对任何n∈N*,命题都成立.
|
科目:高中数学 来源: 题型:
| 1 |
| n+3 |
| 1 |
| 2 |
| m |
| n+3 |
| 1 |
| 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:
| 1 |
| 6 |
| 1 |
| 2 |
| 4 |
| 3 |
| 3 |
| 2 |
| 2 |
| 2 |
| 2 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com