精英家教网 > 高中数学 > 题目详情

如果函数对于任意实数,存在常数,使该不等式恒成立,就称函数为有界泛涵,下面有4个函数:① ② 

 ④,其中有两个属于有界泛涵,它们是(    )

A. ①②           B. ②④            C. ①③             D. ③④

 

【答案】

D

【解析】因为

 ② 不存在M成立,

 ④,故选D.

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

42、给出下列命题:
①如果函数f(x)对任意的x1,x2∈R,且x1≠x2,都有(x1-x2)[f(x1)-f(x2)]<0,则函数f(x)在R上是减函数;
②如果函数f(x)对任意的x∈R,都满足f(x)=-f(2+x),那么函数f(x)是周期函数;
③函数y=f(x)与函数y=f(x+1)-2的图象一定不能重合;
④对于任意实数x,有f(-x)=-f(x),g(-x)=g(x),且x>0时,f′(x)>0,g′(x)>0,则x<0时,f′(x)>g′(x).
其中正确的命题是
①②④
.(把你认为正确命题的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•杭州二模)已知函数f(x)=lnx,g(x)=
1
2
x2

(Ⅰ)设函数F(x)=f(x)-ag(x),若x∈(0,2),函数F(x)不存在极值,求实数a的取值范围;
(Ⅱ)设函数G(x)=
(x-1)[f2(x)+g(x)]
g(x)
,如果对于任意实数x∈(1,t],都有不等式tG(x)-xG(t)≤G(x)-G(t)成立,求实数t的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•宁波二模)设函数f(x)=lnx+ax2-(3a+1)x+(2a+1),其中a∈R.
(Ⅰ)如果x=1是函数f(x)的一个极值点,求实数a的值及f(x)的最大值;
(Ⅱ)求实数a的值,使得函数f(x)同时具备如下的两个性质:
①对于任意实数x1,x2∈(0,1)且x1≠x2
f(x1)+f(x2)
2
<f(
x1+x2
2
)
恒成立;
②对于任意实数x1,x2∈(1,+∞)且x1≠x2
f(x1)+f(x2)
2
>f(
x1+x2
2
)
恒成立.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年新疆乌鲁木齐市高三上学期第一次月考理科数学试卷(解析版) 题型:选择题

如果函数对于任意实数,存在常数,使该不等式恒成立,就称函数为有界泛涵,下面有4个函数:① ② 

 ④,其中有两个属于有界泛涵,它们是(    )

A. ①②           B. ②④            C. ①③             D. ③④

 

查看答案和解析>>

同步练习册答案