精英家教网 > 高中数学 > 题目详情

已知△ABC中,acosB=bcosA,则△ABC为


  1. A.
    等腰三角形
  2. B.
    直角三角形
  3. C.
    等腰或直角三角形
  4. D.
    钝角三角形
A
分析:利用正弦定理化简已知的等式,得到sinAcosB=sinBcosA,移项后再利用两角和与差的正弦函数公式得到sin(A-B)的值为0,由A和B为三角形的内角,可得出A-B=0,即A=B,根据等角对等边可得到三角形为等腰三角形.
解答:由正弦定理得:==2R,
∴a=2RsinA,b=2RsinB,
代入acosB=bcosA得:sinAcosB=sinBcosA,
即sinAcosB-cosAsinB=sin(A-B)=0,
又A和B为三角形的内角,
∴A-B=0,即A=B,
则△ABC为等腰三角形.
故选A
点评:此题考查了三角形形状的判断,涉及的知识有:正弦定理,两角和与差的正弦函数公式,以及特殊角的三角函数值,熟练掌握定理及公式是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知△ABC中,AC=1,∠ABC=
3
,设∠BAC=x,记f(x)=AB.
(Ⅰ)求f(x)的解析式及定义域;
(Ⅱ)D是AB边的中点,若f(x)=
3
3
,求CD长.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•闵行区二模)已知△ABC中,AC=2
2
,BC=2,则角A的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC中,AC=BC=2,∠ACB=120°,D为AB的中点,E,F分别在线段AC,BC上,且EF∥AB,EF交CD于G,把△ADC沿CD折起,如图所示,

(1)求证:E1F∥平面A1BD;
(2)当二面角A1-CD-B为直二面角时,是否存在点F,使得直线A1F与平面BCD所成的角为60°,若存在求CF的长,若不存在说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC中,AC=1,∠ABC=
3
.设∠BAC=x,记f(x)=AB.
(Ⅰ)求f(x)的解析式及定义域;
(Ⅱ)设g(x)=6m•f(x)+1,求实数m,使函数g(x)的值域为(1,
3
2
).

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•抚州模拟)已知△ABC中,AC=1,∠ABC=
3
,设∠BAC=x,并记f(x)=
AB
BC

(1)求函数f(x)的解析式及其定义域;
(2)设函数g(x)=6mf(x)+1,若函数g(x)的值域为(1,
5
4
]
,试求正实数m的值.

查看答案和解析>>

同步练习册答案