| A. | -1 | B. | 0 | C. | 1 | D. | 2 |
分析 f(x)有零点?不等式ax+x2-xlna-t≤1有实数解?t≥ax+x2-xlna-1有实数解?t≥(ax+x2-xlna-1)min,利用导数可求得≥(ax+x2-xlna-1)min.
解答 解:函数f(x)=|ax+x2-xlna-t|-1(0<a<1)有零点?不等式ax+x2-xlna-t≤1有实数解
?t≥ax+x2-xlna-1有实数解?t≥(ax+x2-xlna-1)min,
令g(x)=ax+x2-xlna-1,则g′(x)=axlna+2x-lna,g″(x)=axln2a+2>0,
∴g′(x)为增函数,
而g′(0)=a0lna+2×0-lna=0,
∴x>0时,g′(x)>g′(0)=0,g(x)为增函数;
当x<0时,g′(x)<g′(0)=0,g(x)为减函数;
∴g(x)min=g(0)=0,
∴t≥0,即实数t的最小值为0.
故选:B.
点评 本题考查函数的零点、函数最值的求解及导数的应用,考查学生综合运用所学知识分析解决问题的能力.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 证明假设n=k(k≥1且k∈N)时正确,可推出n=k+1正确 | |
| B. | 证明假设n=2k+1(k≥1且k∈N)时正确,可推出n=2k+3正确 | |
| C. | 证明假设n=2k-1(k≥1且k∈N)时正确,可推出n=2k+1正确 | |
| D. | 证明假设n≤k(k≥1且k∈N)时正确,可推出n=k+2时正确 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | $\frac{ln2}{2}$ | C. | ln2 | D. | 1-ln2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com