分析 方程有两个相异的实数解α,β,将其代入,进行化简,利用和差化积和二倍角的关系求解即可.
解答 解:∵α、β是方程的相异解,sinα+$\sqrt{3}$cosα+k=0…①
sinβ+$\sqrt{3}$cosβ+k=0…②
由①-②得(sinα-sinβ)+$\sqrt{3}$(cosα-cosβ)=0
∴2con($\frac{α+β}{2}$)sin($\frac{α-β}{2}$)$+2\sqrt{3}$sin($\frac{α+β}{2}$)sin($\frac{α-β}{2}$)=0
∵相异的实数解α,β
∴sin($\frac{α-β}{2}$)≠0
∴2cos($\frac{α+β}{2}$)$+2\sqrt{3}$sin($\frac{α+β}{2}$)=0
即tan($\frac{α+β}{2}$)=$-\sqrt{3}$
tan(α+β)=$\frac{2tan(\frac{α+β}{2})}{1-ta{n}^{2}(\frac{α+β}{2})}$=$\sqrt{3}$
∵α,β∈(0,2π)
∴α+β=$\frac{π}{3}$或$\frac{4π}{3}$
故答案为:$\frac{π}{3}$或$\frac{4π}{3}$.
点评 本题考察了化简能力和计算能力,利用了和差化积和二倍角公式求解.属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com