精英家教网 > 高中数学 > 题目详情
16.已知a>0,b>0,且a+b=1,求证:3a+3b<4.

分析 a>0,b>0,可得1<3a<3.由于a+b=1,可得3a+3b=3a+31-a=${3}^{a}+\frac{3}{{3}^{a}}$,令3a=t∈(1,3),
则f(t)=t+$\frac{3}{t}$,利用导数研究其单调性即可得出.

解答 证明:∵a>0,b>0,∴1<3a<3.
∵a+b=1,
∴3a+3b=3a+31-a=${3}^{a}+\frac{3}{{3}^{a}}$,
令3a=t∈(1,3),
则f(t)=t+$\frac{3}{t}$,f′(t)=1-$\frac{3}{{t}^{2}}$=$\frac{{t}^{2}-3}{{t}^{2}}$=$\frac{(t+\sqrt{3})(t-\sqrt{3})}{{t}^{2}}$,
当$1<t<\sqrt{3}$时,f′(t)<0,函数f(t)单调递减;当$\sqrt{3}<t<3$时,f′(t)>0,函数f(t)单调递增.
又f(1)=f(3)=4,
∴f(t)<4.
即3a+3b<4.

点评 本题考查了利用导数研究其单调性极值与最值,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.函数y=$\sqrt{lo{g}_{2}(1-x)}$的定义域是(  )
A.(-∞,0]B.(-∞,1)C.(0,1)D.[0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),其焦距为2c,若椭圆中的a,b,c成等比数列,我们称这样的椭圆为“黄金椭圆”.
(1)求黄金椭圆的离心率;
(2)已知黄金椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的所有焦点分别是F1(-c,0),F2(c,0),以A(-a,0),B(a,0),D(0,-b),E(0,b)为顶点的菱形ADBE的内切圆记为⊙M,试判断F1、F2与M的位置关系;
(3)若黄金椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的右焦点为F2(c,0),P为椭圆C上的任意一点,是否存在过点F2、P的直线l,使得l与y轴的交点r满足$\overrightarrow{RP}$=-3$\overrightarrow{P{F}_{2}}$,若存在,求直线l的斜率k;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.用二项式定理证明:32n-8n-1能被64整除(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知△ABC的内角A,B,C所对的边长分别为a,b,c,若a,b,c成等差数列,且c=$\frac{3}{2}$a,则cosB=(  )
A.$\frac{1}{4}$B.$\frac{3}{4}$C.$\frac{9}{16}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.给出下列命题:
①y′=f′(x)在点x=x0处的函数值就是函数y=f(x)在x=x0处的导数值;
②求f′(x0)时,可先求f(x0)再求f′(x0).
③曲线的切线不一定与曲线只有一个公共点.
④与曲线只有一个公共点的直线一定是曲线的切线.
⑤若f(x)=f′(a)x2+lnx(a>0),则f′(x)=2xf′(a)+$\frac{1}{x}$.
其中正确的是③⑤.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知圆x2+y2=4与直线2x-y+m=0相交于不同的两点A,B,O是坐标原点.
(1)求实数m的取值范围;
(2)若OA⊥OB,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=lnx-$\frac{2(x-1)}{x+1}$.
(1)若函数f(x)在区间(0,k)上存在零点,求实数k的取值范围;
(2)记Pn(n,lnn)(n∈N+),线段PnPn+1的斜率为kn,Sn=$\frac{1}{{k}_{1}}$+$\frac{1}{{k}_{2}}$+…+$\frac{1}{{k}_{n}}$,求证:Sn<$\frac{n(n+2)}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.用数学归纳法证明:1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{{2}^{n}-1}$>$\frac{n}{2}$(n∈N+

查看答案和解析>>

同步练习册答案