精英家教网 > 高中数学 > 题目详情
已知数列,其中为实数,为正整数.

(Ⅰ)证明:对任意实数,数列不是等比数列;

(Ⅱ)证明:当

(Ⅲ)设为数列的前n项和,是否存在实数,使得对任意正整数n,都有

     若存在,求的取值范围;若不存在,说明理由.

本小题主要考查等比数列的定义、数列示和、不等式等基础知识和基本的运算技能,考查分析问题能力和推理能力.

(Ⅰ)证明:假设存在一个实数,使{an}是等比数列,则有,即

2=2矛盾.

所以{an}不是等比数列.

(Ⅱ)证明:∵

                 

                                                                   

由上式知

故当数列{bn}是以为首项,为公比的等比数列.

(Ⅲ)当由(Ⅱ)得于是

      

         当时,,从而上式仍成立.

         要使对任意正整数n , 都有

          即

          令

          当n为正奇数时,n为正偶数时,

          

           于是可得

           综上所述,存在实数,使得对任意正整数,都有

          的取值范围为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知实数列{an}是等比数列,其中a7=1,且a4,a5+1,a6成等差数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)数列{an}的前n项和记为Sn,证明:Sn<128(n=1,2,3,…).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1a-x
-1
(其中a为常数,x≠a).利用函数y=f(x)构造一个数列{xn},方法如下:
对于给定的定义域中的x1,令x2=f(x1),x3=f(x2),…,xn=f(xn-1),…
在上述构造过程中,如果xi(i=1,2,3,…)在定义域中,那么构造数列的过程继续下去;如果xi不在定义域中,那么构造数列的过程就停止.
(Ⅰ)当a=1且x1=-1时,求数列{xn}的通项公式;
(Ⅱ)如果可以用上述方法构造出一个常数列,求a的取值范围;
(Ⅲ)是否存在实数a,使得取定义域中的任一实数值作为x1,都可用上述方法构造出一个无穷数列{xn}?若存在,求出a的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知:正数数列{an}的通项公式an=
3n+2
3n-1
(n∈N*
(1)求数列{an}的最大项;
(2)设bn=
an+p
an-2
,确定实常数p,使得{bn}为等比数列;
(3)(理)数列{Cn},满足C1>-1,C1
2
,Cn+1=
Cn+p
Cn+1
,其中p为第(2)小题中确定的正常数,求证:对任意n∈N*,有C2n-1
2
且C2n
2
或C2n-1
2
且C2n
2
成立.
(文)设{bn}是满足第(2)小题的等比数列,求使不等式-b1+b2-b3+…+(-1)nbn≥2010成立的最小正整数n.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知实数列{an}是公比小于1的等比数列,其中a2=4,且a1,a2+1,a3成等差数列.
(I)求数列{an}的通项公式;
(II)数列{an}的前n项和记为Sn,求
limn→∞
Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•奉贤区模拟)我们规定:对于任意实数A,若存在数列{an}和实数x(x≠0),使得A=a1+a2x+a3x2+…+anxn-1,则称数A可以表示成x进制形式,简记为:A=
.
x\~(a1)(a2)(a3)…(an-1)(an)
.如:A=
.
2\~(-1)(3)(-2)(1)
,则表示A是一个2进制形式的数,且A=-1+3×2+(-2)×22+1×23=5.
(1)已知m=(1-2x)(1+3x2)(其中x≠0),试将m表示成x进制的简记形式.
(2)若数列{an}满足a1=2,ak+1=
1
1-ak
,k∈N*
bn=
.
2\~(a1)(a2)(a3)…(a3n-2)(a3n-1)(a3n)
(n∈N*),是否存在实常数p和q,对于任意的n∈N*,bn=p•8n+q总成立?若存在,求出p和q;若不存在,说明理由.
(3)若常数t满足t≠0且t>-1,dn=
.
t\~(
C
1
n
)(
C
2
n
)(
C
3
n
)…(
C
n-1
n
)(
C
n
n
)
,求
lim
n→∞
dn
dn+1

查看答案和解析>>

同步练习册答案