精英家教网 > 高中数学 > 题目详情
3.四边形ABCD中,∠ABC=∠ADC=90°,AB=2,AD=3,则$\overrightarrow{AC}$•$\overrightarrow{BD}$=(  )
A.5B.-5C.1D.-1

分析 不妨假设四边形ABCD为矩形,则$\overrightarrow{AC}$•$\overrightarrow{BD}$=($\overrightarrow{AD}$+$\overrightarrow{AB}$)•($\overrightarrow{AD}$-$\overrightarrow{AB}$)=${\overrightarrow{AD}}^{2}$-${\overrightarrow{AB}}^{2}$,结合条件求得结果.

解答 解:根据题意,不妨假设四边形ABCD为矩形,则$\overrightarrow{AC}$•$\overrightarrow{BD}$=($\overrightarrow{AD}$+$\overrightarrow{AB}$)•($\overrightarrow{AD}$-$\overrightarrow{AB}$)=${\overrightarrow{AD}}^{2}$-${\overrightarrow{AB}}^{2}$=9-4=5,
故选:A.

点评 本题主要考查两个向量的加减法的法则,以及其几何意义,两个向量的数量积的运算,注意特殊化的解题思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知一个程序语句如图:
(1)若输入X的值为0,求输出Y的值?
(2)若输出Y的值为3,求输入X的值?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.将下面三段论形式补充完整:
因为三角函数是周期函数,(大前提)
而y=cosx(x∈R)是三角函数,(小前提)
所以y=cos x (x∈R)是周期函数.(结论)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知数列{an}的前n项和Sn,且满足2Sn=nan+3n,(n∈N*)且S2=8.
(1)求a1,a2,a3的值;
(2)证明数列{an}是等差数列,并求数列{an}的通项公式;
(3)求证:$\frac{1}{{S}_{1}}$+$\frac{1}{{S}_{2}}$+$\frac{1}{{S}_{3}}$+…+$\frac{1}{{S}_{n}}$<$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在锐角△ABC中,角A,B,C所对的边分别为a,b,c,已知向量$\overrightarrow{m}$=(sinA,$\frac{1}{2}$),$\overrightarrow{n}$=(3,sinA+$\sqrt{3}$cosA),且$\overrightarrow m$∥$\overrightarrow n$,
(1)求角A的大小;
(2)求$\frac{b+c}{a}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知非零向量$\overrightarrow a,\overrightarrow b$的交角为600,且$|\overrightarrow a-\overrightarrow b|=1$,则$|\overrightarrow a+\overrightarrow b|$的取值范围为$(1,\sqrt{3}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知函数$f(x)={log_{\frac{1}{2}}}({{x^2}-ax+1})$,若函数的定义域为R,则实数a∈(-2,2);若f(x)的值域为R,则实数a∈(-∞,-2]∪[2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.定义在R上的函数y=f(x)是减函数,且对任意的a∈R,都有f(-a)+f(a)=0,若x、y满足不等式f(x2-2x)+f(2y-y2)≤0,则当1≤x≤4时,x-2y的最小值为(  )
A.-4B.-1C.0D.8

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知等比数列{an}的公比q=$\frac{1}{3}$,且a1+a3+a5+…+a99=66,则其前100项和和S100=88.

查看答案和解析>>

同步练习册答案