精英家教网 > 高中数学 > 题目详情
13.如果幂函数y=(m2-3m+3)${x^{\frac{{{m^2}-m-2}}{2}}}$的图象不过原点,则m取值是(  )
A.m=1B.m=2C.-1≤m≤2D.m=1,或m=2

分析 利用幂函数的定义及性质直接求解.

解答 解:∵幂函数y=(m2-3m+3)${x^{\frac{{{m^2}-m-2}}{2}}}$的图象不过原点,
∴$\left\{\begin{array}{l}{{m}^{2}-3m+3=1}\\{\frac{{m}^{2}-m-2}{2}≤0}\end{array}\right.$,
解得m=1或m=2.
故选:D.

点评 本题考查实数值的求法,是基础题,解题时要认真审题,注意幂函数的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.已知集合M={x|-1<x<1},N={x|$\frac{x}{x-1}$≤0},则M∩N={x|0≤x<1}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知α,β都是锐角,$cosα=\frac{1}{7},cos(α+β)=-\frac{11}{14}$,则β为(  )
A.60°B.45°C.30°D.15°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.椭圆C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1$(a>b>0)的两个焦点坐标分别是(-1,0),(1,0),并且经过点($\frac{1}{2}$,$\frac{3\sqrt{5}}{4}$).
(I)求椭圆的标准方程;
(Ⅱ)设直线l:y=kx+m(m≠0)与椭圆C交于不同的两点A,B,且以AB为直径的圆通过椭圆C的右顶点P,求证:直线l过定点(P点除外),并求出该定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.当0<x<$\frac{π}{2}$时,函数f(x)=$\frac{4tan\frac{x}{2}(1+cos2x)}{1-ta{n}^{2}\frac{x}{2}}$的最大值是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设平面内有与两定点A1(-2,0),A2(2,0)连接的斜率之积等于-$\frac{1}{4}$的点的轨迹,A1,A2两点所成的曲线为C.
(1)求曲线C的方程;
(2)设直线l经过曲线C的一个焦点,直线l与曲线C相交于A,B两点,求证:|AB|min=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.(1-2x)6=a0+a1x+a2x2+…+a6x6,则|a0|+|a1|+|a2|+…+|a6|=729.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知|${\overrightarrow a}$|=5,|${\overrightarrow b}$|=3,且两向量的夹角为60°,则向量$\overrightarrow a$在向量$\overrightarrow b$上的投影等于(  )
A.$\frac{3}{2}$B.$\frac{5}{2}$C.$\frac{{3\sqrt{3}}}{2}$D.$\frac{{5\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=2lnx+$\frac{a}{2}$x2-(2a+1)x.
(1)当a=1时,求f(x)在(1,f(1))处的切线方程;
(2)若a>0,求f(x)的单调区间.

查看答案和解析>>

同步练习册答案