精英家教网 > 高中数学 > 题目详情
8.当0<x<$\frac{π}{2}$时,函数f(x)=$\frac{4tan\frac{x}{2}(1+cos2x)}{1-ta{n}^{2}\frac{x}{2}}$的最大值是(  )
A.1B.2C.3D.4

分析 逆用二倍角的正切与二倍角的余弦、正弦,可化简f(x)=$\frac{4tan\frac{x}{2}(1+cos2x)}{1-ta{n}^{2}\frac{x}{2}}$=2sin2x,再结合已知0<x<$\frac{π}{2}$,利用正弦函数的有界性可得答案.

解答 解:∵0<x<$\frac{π}{2}$,
∴0<2x<π,
∴0<sin2x≤1,
∴f(x)=$\frac{4tan\frac{x}{2}(1+cos2x)}{1-ta{n}^{2}\frac{x}{2}}$=2(1+cos2x)•tanx=4cos2x•$\frac{sinx}{cosx}$=2sin2x≤2,
当且仅当x=$\frac{π}{4}$时取到“=”,
故选:B.

点评 本题考查三角函数的化简求值,逆用二倍角的正切、余弦、正弦,化简f(x)=2sin2x是关键,考查转化思想与整体运用能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的渐近线方程为y=±$\frac{1}{2}$x,且焦点到渐近线的距离为$\sqrt{3}$,则双曲线的方程为(  )
A.$\frac{x^2}{4}-{y^2}$=1B.$\frac{x^2}{3}-\frac{y^2}{12}$=1C.$\frac{x^2}{12}-\frac{y^2}{3}$=1D.${x^2}-\frac{y^2}{4}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若${(2-x)^4}={a_0}+{a_1}x+{a_2}{x^2}+{a_3}{x^3}+{a_4}{x^4}$,则a1+a2+a3+a4=(  )
A.-15B.15C.-16D.16

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知过抛物线G:y2=2px(p>0)焦点F的直线l与抛物线G交于M,N两点(M点在x轴上方),满足$\overrightarrow{MF}$=3$\overrightarrow{FN}$,|MN|=$\frac{16}{3}$,则以M为圆心且与抛物线准线相切的圆的标准方程为(  )
A.(x-$\frac{1}{3}$)2+(y-$\frac{2\sqrt{3}}{3}$)2=$\frac{16}{3}$B.(x-$\frac{1}{3}$)2+(y+$\frac{2\sqrt{3}}{3}$)2=$\frac{16}{3}$
C.(x-3)2+(y-2$\sqrt{3}$)2=16D.(x-3)2+(y+2$\sqrt{3}$)2=16

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.△ABC中,若b=2,A=120°,三角形的面积$S=\sqrt{3}$,则三角形外接圆的半径为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.如果幂函数y=(m2-3m+3)${x^{\frac{{{m^2}-m-2}}{2}}}$的图象不过原点,则m取值是(  )
A.m=1B.m=2C.-1≤m≤2D.m=1,或m=2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=xex-k(x+1)2,(k∈R)
(1)k=$\frac{e}{2}$时,求f(x)的单调区间和极值;
(2)若f(x)在R上只有一个零点,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.直线y=x-1被抛物线y2=8x截得线段的中点纵坐标为4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若sin($\frac{π}{6}$-α)=$\frac{3}{5}$,则cos($\frac{2π}{3}$+2α)=(  )
A.$\frac{4}{5}$B.-$\frac{4}{5}$C.$\frac{7}{25}$D.-$\frac{7}{25}$

查看答案和解析>>

同步练习册答案