| A. | (x-$\frac{1}{3}$)2+(y-$\frac{2\sqrt{3}}{3}$)2=$\frac{16}{3}$ | B. | (x-$\frac{1}{3}$)2+(y+$\frac{2\sqrt{3}}{3}$)2=$\frac{16}{3}$ | ||
| C. | (x-3)2+(y-2$\sqrt{3}$)2=16 | D. | (x-3)2+(y+2$\sqrt{3}$)2=16 |
分析 确定直线l的斜率为$\sqrt{3}$,可得方程为y=$\sqrt{3}$(x-$\frac{p}{2}$),与抛物线方程联立可得3x2-5px+$\frac{3}{4}{p}^{2}$=0,利用|MN|=$\frac{16}{3}$,求出p,可得M的坐标,即可求出以M为圆心且与抛物线准线相切的圆的标准方程.
解答
解:如图,过点N作NE⊥MM′,由抛物线的定义,|MM′|=|MF|,|NN′|=|NF|.
∵$\overrightarrow{MF}$=3$\overrightarrow{FN}$,∴|MM′|=3|NN′|,
∴|ME|=2|NN′|,
∵|MN|=4|NN′|,
∴|MN|=2|ME|,
∴得∠EMF=$\frac{π}{3}$,所以直线l的斜率为$\sqrt{3}$
其方程为y=$\sqrt{3}$(x-$\frac{p}{2}$),
与抛物线方程联立可得3x2-5px+$\frac{3}{4}{p}^{2}$=0,
∴x1+x2=$\frac{5}{3}$p,
∴|MN|=$\frac{8}{3}$p=$\frac{16}{3}$,
∴p=2,
∴M(3,2$\sqrt{3}$),r=4,
∴圆的标准方程为(x-3)2+(y-2$\sqrt{3}$)2=16.
故选:C.
点评 本题主要考查以M为圆心且与抛物线准线相切的圆的标准方程,考查抛物线定义以及抛物线的性质,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 60° | B. | 45° | C. | 30° | D. | 15° |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com