精英家教网 > 高中数学 > 题目详情
7.(1)已知角α的终边经过点P(4,-3),求2sinα+cosα的值.
(2)已知角α的终边上一点$P(-\sqrt{3},m)(m≠0)$,且$sinα=\frac{{\sqrt{2}m}}{4}$,求cosα及tanα.

分析 (1)由条件利用任意角的三角函数的定义,求得sinα和cosα 的值,可得2sinα+cosα 的值.
(2)由题意可得sinα=$\frac{\sqrt{2}m}{4}$=$\frac{m}{\sqrt{{3+m}^{2}}}$,由此求得m的值,可得cosα及tanα的值.

解答 解:(1)∵已知角α的终边经过点P(4,-3),∴x=4,y=-3,r=|OP|=5,
∴sinα=$\frac{y}{r}$=-$\frac{3}{5}$,cosα=$\frac{x}{r}$=$\frac{4}{5}$,∴2sinα+cosα=-$\frac{6}{5}$+$\frac{4}{5}$=-$\frac{2}{5}$.
(2)已知角α的终边上一点$P(-\sqrt{3},m)(m≠0)$,且$sinα=\frac{{\sqrt{2}m}}{4}$=$\frac{m}{\sqrt{3{+m}^{2}}}$,
∴m=±$\sqrt{5}$,∴当$m=\sqrt{5}$时,$cosα=-\frac{{\sqrt{6}}}{4},tanα=-\frac{{\sqrt{15}}}{3}$;当$m=-\sqrt{5}$时,$cosα=-\frac{{\sqrt{6}}}{4},tanα=\frac{{\sqrt{15}}}{3}$.

点评 本题主要考查任意角的三角函数的定义,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.假设你家订了一份牛奶,奶哥在早上6:00---7:00之间随机地把牛奶送到你家,而你在早上6:30---7:30之间随机地离家上学,则你在离开家前能收到牛奶的概率是(  )
A.$\frac{1}{8}$B.$\frac{5}{8}$C.$\frac{1}{2}$D.$\frac{7}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的渐近线方程为y=±$\frac{1}{2}$x,且焦点到渐近线的距离为$\sqrt{3}$,则双曲线的方程为(  )
A.$\frac{x^2}{4}-{y^2}$=1B.$\frac{x^2}{3}-\frac{y^2}{12}$=1C.$\frac{x^2}{12}-\frac{y^2}{3}$=1D.${x^2}-\frac{y^2}{4}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.如图所示,4个小动物换座位,开始时鼠,猴,兔,猫分别坐1,2,3,4号座位,如果第1次前后排动物互换座位,第2次左右列动物互换座位,第3次前后排动物互换座位,…,这样交替进行下去,那么第2 015次互换座位后,小兔坐在(  )号座位上.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.求下列各式的值:
(1)若$\frac{π}{2}$<α<π,且$sinα=\frac{4}{5}$,求$\frac{sin(2π-α)tan(π+α)cos(-π+α)}{{sin(\frac{π}{2}-α)cos(\frac{π}{2}+α)}}$的值,
(2)化简$\frac{sin(α+nπ)+sin(α-nπ)}{sin(α+nπ)cos(α-nπ)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若平面向量$\overrightarrow a$=(1,x)和$\overrightarrow b$=(-2,1)互相平行,其中x∈R,则x=$-\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若${(2-x)^4}={a_0}+{a_1}x+{a_2}{x^2}+{a_3}{x^3}+{a_4}{x^4}$,则a1+a2+a3+a4=(  )
A.-15B.15C.-16D.16

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知过抛物线G:y2=2px(p>0)焦点F的直线l与抛物线G交于M,N两点(M点在x轴上方),满足$\overrightarrow{MF}$=3$\overrightarrow{FN}$,|MN|=$\frac{16}{3}$,则以M为圆心且与抛物线准线相切的圆的标准方程为(  )
A.(x-$\frac{1}{3}$)2+(y-$\frac{2\sqrt{3}}{3}$)2=$\frac{16}{3}$B.(x-$\frac{1}{3}$)2+(y+$\frac{2\sqrt{3}}{3}$)2=$\frac{16}{3}$
C.(x-3)2+(y-2$\sqrt{3}$)2=16D.(x-3)2+(y+2$\sqrt{3}$)2=16

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.直线y=x-1被抛物线y2=8x截得线段的中点纵坐标为4.

查看答案和解析>>

同步练习册答案