分析 (1)利用绝对值的不等式求得f(x)=|x+2|+|x-a|的最小值,再由最小值大于4求得a的范围;
(2)写出分段函数解析式,画出图形,数形结合列式求解.
解答 解(1)由log2f(x)>2对任意x∈R恒成立,得f(x)>4对任意x∈R恒成立,
即|x+2|+|x-a|>4对任意x∈R恒成立,
也就是(|x+2|+|x-a|)min>4对任意x∈R恒成立,
由|x+2|+|x-a|≥|(x+2)-(x-a)|=|2+a|,
得|2+a|>4,即2+a<-4或2+a>4,解得a<-6或a>2,
∵a<0,∴a<-6;
(2)∵a>0,
∴f(x)=|x+2|+|x-a|=$\left\{\begin{array}{l}{-2x+a-2,x≤-2}\\{a+2,-2<x<a}\\{2x-a+2,x≥a}\end{array}\right.$,
画出函数y=f(x)与y=$\frac{3}{2}x$的图象如图,![]()
由图可知,要使关于x的不等式f(x)<$\frac{3}{2}$x有解,则$\frac{a+2}{a}<\frac{3}{2}$,解得a>4.
点评 本题考查函数恒成立问题,考查数学转化思想方法和数形结合的解题思想方法,是中档题.
科目:高中数学 来源: 题型:选择题
| A. | (x-$\frac{1}{3}$)2+(y-$\frac{2\sqrt{3}}{3}$)2=$\frac{16}{3}$ | B. | (x-$\frac{1}{3}$)2+(y+$\frac{2\sqrt{3}}{3}$)2=$\frac{16}{3}$ | ||
| C. | (x-3)2+(y-2$\sqrt{3}$)2=16 | D. | (x-3)2+(y+2$\sqrt{3}$)2=16 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | y=-$\sqrt{x}$ | B. | y=log${\;}_{\frac{1}{2}}$x | C. | y=x-3 | D. | y=-x2+2x+1 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 男 | 女 | 总计 | |
| 爱好 | 40 | ||
| 不爱好 | 25 | ||
| 总计 | 45 | 100 |
| p(K2≥k0) | 0.050 | 0.010 | 0.001 |
| k0 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{4}{5}$ | B. | -$\frac{4}{5}$ | C. | $\frac{7}{25}$ | D. | -$\frac{7}{25}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com