精英家教网 > 高中数学 > 题目详情
11.通过随机询问100性别不同的大学生是否爱好某项运动,得到如下2×2列联表:
 男总计
爱好40
不爱好25
总计45100
(Ⅰ)将题中的2×2列联表补充完整;
(Ⅱ)能否有99%的把握认为断爱好该项运动与性别有关?请说明理由;
(Ⅲ)利用分层抽样的方法从以上爱好该项运动的大学生中抽取6人组建了“运动达人社”,现从“运动达人设”中选派3人参加某项校际挑战赛,记选出3人中的女大学生人数为X,求X的分布列和数学期望.
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,
p(K2≥k00.0500.0100.001
k03.8416.63510.828

分析 (Ⅰ)根据2×2列联表数据共享将表中空白部分数据补充完整.
(Ⅱ)求出K2,与临界值比较,即可得出结论;
(Ⅲ)由题意,抽取6人中,男生4名,女生2名,选出3人中的女大学生人数为X,X的取值为0,1,2,分别求出相应的概率,由此能求出X的分布列和E(X).

解答 解:(Ⅰ)2×2列联表如下:

 男总计
爱好402060
不爱好152540
总计5545100
(Ⅱ)K2=$\frac{100×(40×25-20×15)^{2}}{55×45×60×40}$≈8.25>6.635,
∴99%的把握认为断爱好该项运动与性别有关;
(Ⅲ)由题意,抽取6人中,男生4名,女生2名,选出3人中的女大学生人数为X,X的取值为0,1,2,
则P(X=0)=$\frac{{C}_{4}^{3}}{{C}_{6}^{3}}$=$\frac{1}{5}$,P(X=1)=$\frac{{C}_{4}^{2}{C}_{2}^{1}}{{C}_{6}^{3}}$=$\frac{3}{5}$,P(X=2)=$\frac{{C}_{4}^{1}{C}_{2}^{2}}{{C}_{6}^{3}}$=$\frac{1}{5}$.
X的分布列为
X012
P$\frac{1}{5}$$\frac{3}{5}$$\frac{1}{5}$
E(X)=0$\frac{1}{5}$×+1×$\frac{3}{5}$+2×$\frac{1}{5}$=1.

点评 本题考查概率的求法及应用,考查离散型随机变量的分布列和数学期望的求法,是中档题,解题时要认真审题,注意排列组合知识的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.椭圆C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1$(a>b>0)的两个焦点坐标分别是(-1,0),(1,0),并且经过点($\frac{1}{2}$,$\frac{3\sqrt{5}}{4}$).
(I)求椭圆的标准方程;
(Ⅱ)设直线l:y=kx+m(m≠0)与椭圆C交于不同的两点A,B,且以AB为直径的圆通过椭圆C的右顶点P,求证:直线l过定点(P点除外),并求出该定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知|${\overrightarrow a}$|=5,|${\overrightarrow b}$|=3,且两向量的夹角为60°,则向量$\overrightarrow a$在向量$\overrightarrow b$上的投影等于(  )
A.$\frac{3}{2}$B.$\frac{5}{2}$C.$\frac{{3\sqrt{3}}}{2}$D.$\frac{{5\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.(1)解不等式:$\sqrt{x-1}$+2x≤5
(2)解关于x的不等式:$\frac{ax-1}{x-2}$>$\frac{a}{2}$(a∈R).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设函数f(x)=|x+2|+|x-a|,x∈R
(1)若a<0,且log2f(x)>2对任意x∈R恒成立,求实数a的取值范围;
(2)若a>0,且关于x的不等式f(x)<$\frac{3}{2}$x有解,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知向量$\overrightarrow{a}$=(5cosα,4),$\overrightarrow{b}$=(3,4tanα),其中α∈($\frac{π}{2}$,π).
(1)若$\overrightarrow{a}$∥$\overrightarrow{b}$,求sin2α的值;
(2)若|$\overrightarrow{a}$|=5,向量$\overrightarrow{c}$=(2,0),求证:($\overrightarrow{a}$+$\overrightarrow{b}$)⊥$\overrightarrow{c}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=2lnx+$\frac{a}{2}$x2-(2a+1)x.
(1)当a=1时,求f(x)在(1,f(1))处的切线方程;
(2)若a>0,求f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知$\overrightarrow{BA}$=($\frac{1}{2}$,$\frac{{\sqrt{3}}}{2}$),$\overrightarrow{BC}$=($\frac{{\sqrt{3}}}{2}$,$\frac{1}{2}$),则<$\overrightarrow{BA}$,$\overrightarrow{BC}$>=(  )
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知集合A={-2,-1,0,1,2,3},集合B={x|y=$\sqrt{4-{x}^{2}}$},则A∩B等于(  )
A.[-2,2]B.{-1,0,1}C.{-2,-1,0,1,2}D.{0,1,2,3}

查看答案和解析>>

同步练习册答案