精英家教网 > 高中数学 > 题目详情
1.下列函数中,在区间(0,1)是增函数的是(  )
A.y=-$\sqrt{x}$B.y=log${\;}_{\frac{1}{2}}$xC.y=x-3D.y=-x2+2x+1

分析 根据函数单调性的性质分别进行判断即可.

解答 解:A.y=-$\sqrt{x}$在(0,1)上是减函数,不满足条件.
B.y=log${\;}_{\frac{1}{2}}$x在(0,1)上是减函数,不满足条件,
C.y=x-3在(0,1)上是减函数,不满足条件,
D.y=-x2+2x+1的对称轴为x=1,抛物线开口向下,则函数在(0,1)是增函数,满足条件.
故选:D

点评 本题主要考查函数单调性的判断,要求熟练掌握常见函数的单调性,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知椭圆$\frac{x^2}{16}+{\frac{y}{4}^2}$=1具有性质:若M(2,$\sqrt{3}$),N(-2,-$\sqrt{3}$)是椭圆C上关于原点对称的两个点,点P(x,y)是椭圆上任意一点,当直线PM、PN的斜率都存在,并记为kPM、kPN时,那么kPM与kPN之积是与点P的位置无关的定值-$\frac{1}{4}$.
(1)试对双曲线$\frac{x^2}{16}-\frac{y^2}{4}$=1写出具有类似特性的性质.
(2)对(1)问的结论加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=|lg(x-1)|,且实数a,b满足1<a<b,f(a)=f($\frac{b}{b-1}$).
(Ⅰ)求证:a<2<b;
(Ⅱ)若f(b)=2f($\frac{a+b}{2}$),求证:4<b<3+$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.α为锐角,若cos(α+$\frac{π}{6}}$)=$\frac{4}{5}$,则sin($\frac{2π}{3}-2α}$)=$\frac{24}{25}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.不等式(x-1)(x-2)≤0的解集是[1,2].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设函数f(x)=|x+2|+|x-a|,x∈R
(1)若a<0,且log2f(x)>2对任意x∈R恒成立,求实数a的取值范围;
(2)若a>0,且关于x的不等式f(x)<$\frac{3}{2}$x有解,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.如图,半径为2的⊙O中,∠AOB=120°,C为OB的中点,AC的延长线交⊙O于点D,连接BD,则弦BD的长为(  )
A.$\frac{2\sqrt{3}}{3}$B.$\sqrt{3}$C.$\frac{2\sqrt{7}}{7}$D.$\frac{3\sqrt{7}}{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.Rt△ABC中,AB=AC,以C点为一个焦点作一个椭圆,使这个椭圆的另一个焦点在边AB上,且椭圆过A、B两点,则这个椭圆的离心率为$\sqrt{6}-\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知抛物线C:y2=4x,过其焦点F作两条相互垂直且不平行于坐标轴的直线,它们分别交抛物线C于点P1、P2和点P3、P4,线段P1P2、P3P4的中点分别为M1、M2
(Ⅰ)求线段P1P2的中点M1的轨迹方程;
(Ⅱ)求△FM1M2面积的最小值;
(Ⅲ)过M1、M2的直线l是否过定点?若是,求出定点坐标,若不是,请说明理由.

查看答案和解析>>

同步练习册答案