精英家教网 > 高中数学 > 题目详情
6.二面角α-l-β为60°,异面直线a,b分别垂直α,β,则a与b的夹角为(  )
A.30°B.60°C.90°D.120°

分析 在空间取一点A,作A作BA∥a,AC∥b,过B作BO⊥l,交l于O,连结OC,则OC⊥l,从而直线线AB与直线AC的夹角为60°,由此能求出a与b的夹角.

解答 解:如图,二面角α-l-β为60°,异面直线a,b分别垂直α,β,
在空间取一点A,作A作BA∥a,AC∥b,
则 AB⊥α,B是垂足,AC⊥β,C是垂足,
过B作BO⊥l,交l于O,连结OC,则OC⊥l,
由题意ABOC是平面图形,∠BOC是二面角α-l-β的平面角,
∴∠BOC=60°,
∴∠BAC=120°,
∴直线AB与直线AC的夹角为60°,
∴a与b的夹角为60°.
故选:B.

点评 本题考查异面地直线的夹角的求法,是基础题,解题时要认真审题,注意空间思维能力的培养.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.如图,已知AC是以AB为直径的⊙O的一条弦,点D是劣弧$\widehat{AC}$上的一点,过点D作DH⊥AB于H,交AC于E,延长线交⊙O于F.
(Ⅰ)求证:AD2=AE•AC;
(Ⅱ)延长ED到P,使PE=PC,求证:PE2=PD•PF.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.假设你家订了一份牛奶,奶哥在早上6:00---7:00之间随机地把牛奶送到你家,而你在早上6:30---7:30之间随机地离家上学,则你在离开家前能收到牛奶的概率是(  )
A.$\frac{1}{8}$B.$\frac{5}{8}$C.$\frac{1}{2}$D.$\frac{7}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设复数z满足(1+i)z=|$\sqrt{3}$+i|,其中i为虚数单位,则在复平面内,z对应的点的坐标是(  )
A.($\sqrt{2}$,-$\sqrt{2}$)B.(1,-1)C.(1,-i)D.(2,-2i)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知A,B,C三点不在同一条直线上,O是平面ABC内一定点,P是△ABC内的一动点,若$\overrightarrow{OP}$-$\overrightarrow{OA}$=λ($\overrightarrow{AC}$+$\frac{1}{2}$$\overrightarrow{CB}$),λ∈[0,+∞),则直线AP一定过△ABC的(  )
A.重心B.垂心C.外心D.内心

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知向量$\overrightarrow{OA}$=(k,12),$\overrightarrow{OB}$=(4,5),$\overrightarrow{OC}$=(-k,0),且A,B,C三点共线,则k=-24.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的渐近线方程为y=±$\frac{1}{2}$x,且焦点到渐近线的距离为$\sqrt{3}$,则双曲线的方程为(  )
A.$\frac{x^2}{4}-{y^2}$=1B.$\frac{x^2}{3}-\frac{y^2}{12}$=1C.$\frac{x^2}{12}-\frac{y^2}{3}$=1D.${x^2}-\frac{y^2}{4}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.如图所示,4个小动物换座位,开始时鼠,猴,兔,猫分别坐1,2,3,4号座位,如果第1次前后排动物互换座位,第2次左右列动物互换座位,第3次前后排动物互换座位,…,这样交替进行下去,那么第2 015次互换座位后,小兔坐在(  )号座位上.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知过抛物线G:y2=2px(p>0)焦点F的直线l与抛物线G交于M,N两点(M点在x轴上方),满足$\overrightarrow{MF}$=3$\overrightarrow{FN}$,|MN|=$\frac{16}{3}$,则以M为圆心且与抛物线准线相切的圆的标准方程为(  )
A.(x-$\frac{1}{3}$)2+(y-$\frac{2\sqrt{3}}{3}$)2=$\frac{16}{3}$B.(x-$\frac{1}{3}$)2+(y+$\frac{2\sqrt{3}}{3}$)2=$\frac{16}{3}$
C.(x-3)2+(y-2$\sqrt{3}$)2=16D.(x-3)2+(y+2$\sqrt{3}$)2=16

查看答案和解析>>

同步练习册答案