【题目】已知函数
.
(1)判断函数
的单调性,不需要说明理由.
(2)判断函数
的奇偶性,并说明理由.
(3)对于任意
,不等式
恒成立,求实数
的取值范围.
【答案】(1)增函数; (2)奇函数,理由见解析; (3)
.
【解析】
(1)将函数化为
,即可直接得出结果;
(2)先由解析式,得到函数定义域, 再由
,即可判断出结果;
(3)先由函数奇偶性与单调性,将原不等式化为
,在
恒成立,令
,
,分别讨论
,
,
三种情况,结合二次函数的单调性,即可得出结果.
(1)
为
上的增函数;
(2)根据题意,函数
,其定义域为
,
有
,
则函数
为奇函数;
(3)由(2)的结论,
为
上的奇函数,
则
可化为:
,
即
,
又由
在
上是单调递增的函数,则有
,在
恒成立;
即
,在
恒成立,
设
,
,则等价于
即可.
即
,
当
时,函数
在
上单调递增,其最小值为
,得
,不成立;
当
时,函数
在
上单调递减,在
上单调递增,其最小值为
,解得
,所以
;
当
时,函数
在
上单调递减,其最小值为
,可得
,所以![]()
综上可得:
的取值范围为:
.
科目:高中数学 来源: 题型:
【题目】东莞市摄影协会准备在2019年10月举办主题为“庆祖国70华诞——我们都是追梦人”摄影图片展.通过平常人的镜头记录国强民富的幸福生活,向祖国母亲的生日献礼,摄影协会收到了来自社会各界的大量作品,打算从众多照片中选取100张照片展出,其参赛者年龄集中在
之间,根据统计结果,做出频率分布直方图如图:
![]()
(1)求频率分布直方图中
的值,并根据频率分布直方图,求这100位摄影者年龄的样本平均数
和中位数
(同一组数据用该区间的中点值作代表);
(2)为了展示不同年龄作者眼中的祖国形象,摄影协会按照分层抽样的方法,计划从这100件照片中抽出20个最佳作品,并邀请相应作者参加“讲述照片背后的故事”座谈会.
①在答题卡上的统计表中填出每组相应抽取的人数:
年龄 |
|
|
|
|
|
人数 |
②若从年龄在
的作者中选出2人把这些图片和故事整理成册,求这2人至少有一人的年龄在
的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
过点
,且两焦点与短轴的一个顶点的连线构成等腰直角三角形.
(Ⅰ)求椭圆
的方程;
(Ⅱ)过
的直线
交椭圆于
,
两点,试问:是否存在一个定点
,使得以
为直径的圆恒过点
?若存在,求出点
的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】假定生男孩和生女孩是等可能的,令
{一个家庭中既有男孩又有女孩},
{一个家庭中最多有一个女孩}.对下述两种情形,讨论
与
的独立性.
(1)家庭中有两个小孩;
(2)家庭中有三个小孩.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知某中学联盟举行了一次“盟校质量调研考试”活动,为了解本次考试学生的某学科成绩情况,从中抽取部分学生的分数(满分为
分,得分取正整数,抽取学生的分数均在
之内)作为样本(样本容量为
)进行统计,按照
的分组作出频率分布直方图,并作出样本分数的茎叶图(茎叶图中仅列出了得分在
的数据)
![]()
(Ⅰ)求样本容量
和频率分布直方图中的
的值;
(Ⅱ)在选取的样本中,从成绩在
分以上(含
分)的学生中随机抽取
名学生参加“省级学科基础知识竞赛”,求所抽取的
名学生中恰有一人得分在
内的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲、乙两人各掷一个均匀的骰子,观察朝上的面的点数,记事件A:甲得到的点数为2,B:乙得到的点数为奇数.
(1)求
,
,
,判断事件A与B是否相互独立;
(2)求
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】高尔顿(钉)板是在一块竖起的木板上钉上一排排互相平行、水平间隔相等的圆柱形铁钉(如图),并且每一排钉子数目都比上一排多一个,一排中各个钉子恰好对准上面一排两相邻铁钉的正中央.从入口处放入一个直径略小于两颗钉子间隔的小球,当小球从两钉之间的间隙下落时,由于碰到下一排铁钉,它将以相等的可能性向左或向右落下,接着小球再通过两铁钉的间隙,又碰到下一排铁钉.如此继续下去,在最底层的5个出口处各放置一个容器接住小球.
![]()
(Ⅰ)理论上,小球落入4号容器的概率是多少?
(Ⅱ)一数学兴趣小组取3个小球进行试验,设其中落入4号容器的小球个数为
,求
的分布列与数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列
中,
,且
对任意正整数
都成立,数列
的前
项和为
.
(1)若
,且
,求
;
(2)是否存在实数k,使数列
是公比不为1的等比数列,且任意相邻三项
按某顺序排列后成等差数列,若存在,求出所有k的值;若不存在,请说明理由;
(3)若
,求
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某班50位学生期中考试数学成绩的频率分布直方图如图所示,其中成绩分组区间是:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]
![]()
(Ⅰ)求图中
的值,并估计该班期中考试数学成绩的众数;
(Ⅱ)从成绩不低于90分的学生和成绩低于50分的学生中随机选取2人,求这2人成绩均不低于90分的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com