精英家教网 > 高中数学 > 题目详情
(2012•江苏)在△ABC中,已知
AB
AC
=3
BA
BC

(1)求证:tanB=3tanA;
(2)若cosC=
5
5
,求A的值.
分析:(1)利用平面向量的数量积运算法则化简已知的等式左右两边,然后两边同时除以c化简后,再利用正弦定理变形,根据cosAcosB≠0,利用同角三角函数间的基本关系弦化切即可得到tanB=3tanA;
(2)由C为三角形的内角,及cosC的值,利用同角三角函数间的基本关系求出sinC的值,进而再利用同角三角函数间的基本关系弦化切求出tanC的值,由tanC的值,及三角形的内角和定理,利用诱导公式求出tan(A+B)的值,利用两角和与差的正切函数公式化简后,将tanB=3tanA代入,得到关于tanA的方程,求出方程的解得到tanA的值,再由A为三角形的内角,利用特殊角的三角函数值即可求出A的度数.
解答:解:(1)∵
AB
AC
=3
BA
BC

∴cbcosA=3cacosB,即bcosA=3acosB,
由正弦定理
b
sinB
=
a
sinA
得:sinBcosA=3sinAcosB,
又0<A+B<π,∴cosA>0,cosB>0,
在等式两边同时除以cosAcosB,可得tanB=3tanA;
(2)∵cosC=
5
5
,0<C<π,
sinC=
1-cosC2
=
2
5
5

∴tanC=2,
则tan[π-(A+B)]=2,即tan(A+B)=-2,
tanA+tanB
1-tanAtanB
=-2,
将tanB=3tanA代入得:
tanA+3tanA
1-3tan2A
=-2,
整理得:3tan2A-2tanA-1=0,即(tanA-1)(3tanA+1)=0,
解得:tanA=1或tanA=-
1
3

又coaA>0,∴tanA=1,
又A为三角形的内角,
则A=
π
4
点评:此题属于解三角形的题型,涉及的知识有:平面向量的数量积运算法则,正弦定理,同角三角函数间的基本关系,诱导公式,两角和与差的正切函数公式,以及特殊角的三角函数值,熟练掌握定理及公式是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•江苏)如图,在直三棱柱ABC-A1B1C1中,A1B1=A1C1,D,E分别是棱BC,CC1上的点(点D 不同于点C),且AD⊥DE,F为B1C1的中点.求证:
(1)平面ADE⊥平面BCC1B1
(2)直线A1F∥平面ADE.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•江苏)在平面直角坐标系xOy中,圆C的方程为x2+y2-8x+15=0,若直线y=kx-2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C有公共点,则k的最大值是
4
3
4
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•江苏)如图,在长方体ABCD-A1B1C1D1中,AB=AD=3cm,AA1=2cm,则四棱锥A-BB1D1D的体积为
6
6
cm3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•江苏)在平面直角坐标系xOy中,若双曲线
x2
m
-
y2
m2+4
=1
的离心率为
5
,则m的值为
2
2

查看答案和解析>>

同步练习册答案