精英家教网 > 高中数学 > 题目详情
(2012•江苏)在平面直角坐标系xOy中,圆C的方程为x2+y2-8x+15=0,若直线y=kx-2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C有公共点,则k的最大值是
4
3
4
3
分析:由于圆C的方程为(x-4)2+y2=1,由题意可知,只需(x-4)2+y2=4与直线y=kx-2有公共点即可.
解答:解:∵圆C的方程为x2+y2-8x+15=0,整理得:(x-4)2+y2=1,即圆C是以(4,0)为圆心,1为半径的圆;
又直线y=kx-2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C有公共点,
∴只需圆C:(x-4)2+y2=4与直线y=kx-2有公共点即可.
设圆心C(4,0)到直线y=kx-2的距离为d,
则d=
|4k-2|
1+k2
≤2,即3k2≤4k,
∴0≤k≤
4
3

∴k的最大值是
4
3

故答案为:
4
3
点评:本题考查直线与圆的位置关系,将条件转化为“(x-4)2+y2=4与直线y=kx-2有公共点”是关键,考查学生灵活解决问题的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•江苏)如图,在直三棱柱ABC-A1B1C1中,A1B1=A1C1,D,E分别是棱BC,CC1上的点(点D 不同于点C),且AD⊥DE,F为B1C1的中点.求证:
(1)平面ADE⊥平面BCC1B1
(2)直线A1F∥平面ADE.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•江苏)如图,在长方体ABCD-A1B1C1D1中,AB=AD=3cm,AA1=2cm,则四棱锥A-BB1D1D的体积为
6
6
cm3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•江苏)在△ABC中,已知
AB
AC
=3
BA
BC

(1)求证:tanB=3tanA;
(2)若cosC=
5
5
,求A的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•江苏)在平面直角坐标系xOy中,若双曲线
x2
m
-
y2
m2+4
=1
的离心率为
5
,则m的值为
2
2

查看答案和解析>>

同步练习册答案