精英家教网 > 高中数学 > 题目详情

设函数数学公式
(Ⅰ)求函数f(x)在x=0处的切线方程;
(Ⅱ)记△ABC的内角A、B、C的对边长分别为a、b、c,f′(B)=3且a+c=2,求边长b的最小值.

解:(Ⅰ)当x=0时,f(0)=1-,则切点为(0,1-
,∴f′(0)=2
∴函数f(x)在x=0处的切线方程为y-(1-)=2(x-0),即y=2x+(1-);
(Ⅱ)由(Ⅰ)f′(B)=2sin(B+)+1=3,即sin(B+)=1,∴
由余弦定理可得b2=a2+c2-2accosB=a2+c2-ac=(a+c)2-3ac=4-3ac≥4-3•=4-3=1
当且仅当a=c=1时,取等号
∴b2≥1,
∵b>0,∴b≥1,
∴bmin=1.
分析:(Ⅰ)确定切点坐标,求导函数求斜率,即可求得切线方程;
(Ⅱ)先求B,再利用余弦定理,结合基本不等式,即可求得边长b的最小值.
点评:本题考查导数知识的运用,考查导数的几何意义,考查余弦定理、基本不等式的运用,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2009•武昌区模拟)设函数f(x)=
a
b
,其中向量
a
=(m,cosx),
b
=(1+sinx,1)
,x∈R,且f(
π
2
)=2
.   
(Ⅰ)求实数m的值; 
(Ⅱ)求函数f(x)在区间[-
π
2
π
2
]
上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)的定义域为A,值域为B,如果存在函数x=g(t),使得函数y=f(g(t))的值域仍然是B,那么称函数x=g(t)是函数f(x)的一个等值域变换.
(1)判断下列函数x=g(t)是不是函数f(x)的一个等值域变换?说明你的理由.
①f(x)=2x+1,x∈R,x=g(t)=t2-2t+3,t∈R;
②f(x)=x2-x+1,x∈R,x=g(t)=2t,t∈R;
(2)设函数f(x)=log2(x2-x+1),g(t)=at2+2t+1,若函数x=g(t)是函数f(x)的一个等值域变换,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2006•杭州一模)设函数f(x)=
x2
ax-2
(a∈N*),又存在非零自然数m,使得f(m)=m,f(-m)<-
1
m
成立.
(1)求函数f(x)的表达式;
(2)设{an}是各项非零的数列,若f(
1
an
)=
1
4(a1+a2+…+an)
对任意n∈N*成立,求数列{an}的一个通项公式;
(3)在(2)的条件下,数列{an}是否惟一确定?请给出判断,并予以证明.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年山西省高三第四次四校联考理科数学试卷(解析版) 题型:解答题

(本小题满分12分)

中,角的对边分别为,且

(1)  求角

   (2)  设函数将函数的图象上各点的纵坐标保持不变,横坐标缩短到原来的,把所得图象向右平移个单位,得到函数的图象,求函数的对称中心及单调递增区间.

 

查看答案和解析>>

科目:高中数学 来源:河北省模拟题 题型:解答题

中,角的对边分别为,且
(1)求角
(2)设函数将函数的图象上各点的纵坐标保持不变,横坐标缩短到原来的,把所得图象向右平移个单位,得到函数的图象,求函数的对称中心及单调递增区间.

查看答案和解析>>

同步练习册答案