精英家教网 > 高中数学 > 题目详情
等差数列{an}中,S4=26,Sn-4=77,Sn=187,则这个数列的项数是(  )
A、8项B、22项C、11项D、不能确定
分析:利用Sn-Sn-4=an+an-1+an-2+an-3得到an+an-1+an-2+an-3的和,然后根据项数之和相等的两项的和相等得到a1与an的和,而等差数列的前n项和的公式得Sn=
(a1+an)×n
2
=187,把a1与an的和代入得到关于n的方程,求出n即可.
解答:解:
Sn=a1+a2+a3+a4=26
Sn-Sn-4=an+an-1+an-2+an-3=110

∴4(a1+an)=136.
∴a1+an=34.
Sn=
(a1+an)×n
2
=
34×n
2
=187

∴n=11.
故选C.
点评:本题主要考查了等差数列的性质和等差数列的求和.解题的关键是利用Sn-Sn-4=an+an-1+an-2+an-3以及a1+an=a2+an-1=a3+an-2=a4+an-3也是等差数列的性质.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知等差数列{an}中,a1=-4,且a1、a3、a2成等比数列,使{an}的前n项和Sn<0时,n的最大值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列﹛an﹜中,a3=5,a15=41,则公差d=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an }中,an≠0,且 an-1-an2+an+1=0,前(2n-1)项和S2n-1=38,则n等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在等差数列{an}中,设S1=10,S2=20,则S10的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)在等差数列{an}中,d=2,a15=-10,求a1及Sn
(2)在等比数列{an}中,a3=
3
2
S3=
9
2
,求a1及q.

查看答案和解析>>

同步练习册答案