精英家教网 > 高中数学 > 题目详情
已知f(x)=
x
,x≥1
2x-1,x<1
,则f[
1
f(4)
]的值为(  )
分析:先得出f(4),求出
1
f(4)
,再根据
1
f(4)
的值及范围求出结果.
解答:解:∵4≥1,∴f(4)=
4
=2
1
f(4)
=
1
2
<1

所以f[
1
f(4)
]=f(
1
2
)=2×
1
2
-1=0

故选A.
点评:本题实质上考查分段函数求函数值,要确定好自变量的取值或范围,再代入相应的解析式求得对应的函数值.分段函数分段处理,这是研究分段函数图象和性质最核心的理念.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)是定义在R上的奇函数,当x≥0时,f(x)=x2-kx3.(k≥0)
(Ⅰ)求g(x)的解析式;
(Ⅱ)讨论函数f(x)在区间(-∞,0)上的单调性;
(Ⅲ)若k=
1
3
,设g(x)是函数f(x)在区间[0,+∞)上的导函数,问是否存在实数a,满足a>1并且使g(x)在区间[
1
2
,a]
上的值域为[
1
a
,1]
,若存在,求出a的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=|x-1|+|x+2|.
(1)解不等式f(x)≥5;
(2)若关于x的不等式f(x)>a2-2a对于任意的x∈R恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

求下列函数的解析式.
(1)已知f(x)=x2+2x,求f(2x+1)
(2)已知f(x)为二次函数,且满足f (0)=1,f(x+1)-f(x)=2x,求f(x)
(3)已知2f(
1x
)+f(x)=x(x≠0),求f(x)
(4)若f(x)是定义在R上的奇函数,当x<0时,f(x)=x(2-x),求函数f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知f(x)是定义在R上的奇函数,当x≥0时,f(x)=x2-kx3.(k≥0)
(Ⅰ)求g(x)的解析式;
(Ⅱ)讨论函数f(x)在区间(-∞,0)上的单调性;
(Ⅲ)若数学公式,设g(x)是函数f(x)在区间[0,+∞)上的导函数,问是否存在实数a,满足a>1并且使g(x)在区间数学公式上的值域为数学公式,若存在,求出a的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2011年高三数学第一轮基础知识训练(20)(解析版) 题型:解答题

已知f(x)是定义在R上的奇函数,当x≥0时,f(x)=x2-kx3.(k≥0)
(Ⅰ)求g(x)的解析式;
(Ⅱ)讨论函数f(x)在区间(-∞,0)上的单调性;
(Ⅲ)若,设g(x)是函数f(x)在区间[0,+∞)上的导函数,问是否存在实数a,满足a>1并且使g(x)在区间上的值域为,若存在,求出a的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案