精英家教网 > 高中数学 > 题目详情
9.定义|b-a|为区间(a,b)(a,b∈R,a<b)的长度.则不等式$\frac{3x-4}{{{x^2}+2x}}>\frac{1}{4}$的所有解集区间的长度和为8.

分析 将分式不等式右边化零、并因式分解后,进行等价转化,由穿根法求出不等式的解集.

解答 解:由$\frac{3x-4}{{x}^{2}+2x}>\frac{1}{4}$得$\frac{3x-4}{{x}^{2}+2x}-\frac{1}{4}>0$,
化简得$\frac{{x}^{2}-10x+16}{{4(x}^{2}+2x)}<0$,即$\frac{(x-2)(x-8)}{4x(x+2)}<0$,
等价于(x-2)(x-8)x(x+2)<0,如图所示:

由图可得,不等式的解集是(-2,0)∪(2,8),
∴不等式所有解集区间的长度和是2+6=8,
故答案为:8.

点评 本题考查分式不等式的化简、及等价转化,以及穿根法的应用,考查转化思想,数形结合思想,化简、变形能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.从点(1,0)射出的光线经过直线y=x+1反射后的反射光线射到点(3,0)上,则该束光线经过的最短路程是(  )
A.$2\sqrt{5}$B.$\sqrt{2}$C.$\sqrt{5}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=$\frac{-{2}^{x}+a}{{2}^{x+1}+b}$(a>0,b>0)为奇函数.
(1)求a与b的值;
(2)判断并用定义证明函数f(x)的单调性,再求不等式f(x)>-$\frac{1}{6}$的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知函数$f(x)=\left\{\begin{array}{l}{log_{\frac{1}{3}}}x,x>0\\{({\frac{1}{3}})^x},x≤0\end{array}\right.$,则f(f(5))等于(  )
A.${log_{\frac{1}{3}}}5$B.5C.-5D.${({\frac{1}{3}})^5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.不等式组$\left\{\begin{array}{l}x(x+2)>0\\|x|<1\end{array}\right.$的解集为(0,1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知集合A={x||x-2|<a},集合$B=\left\{{x\left|{\frac{2x-1}{x+2}≤1}\right.}\right\}$,且A⊆B,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知集合A={x|1≤x2<9},B={x|2x-4≥x-2},
(1)求A∩B;
(2)若集合C={x|2x+a>0},满足B∪C=C,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知F1,F2是双曲线$\frac{x^2}{9}-\frac{y^2}{16}$=1的两个焦点,p为双曲线上一点且∠F1PF2=60°,则${S_{△P{F_1}{F_2}}}$=(  )
A.$16\sqrt{3}$B.$\frac{{16\sqrt{3}}}{3}$C.$9\sqrt{3}$D.$3\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若x>0,y>0,x+4y+2xy=7,则x+2y的最小值是3.

查看答案和解析>>

同步练习册答案