分析 将分式不等式右边化零、并因式分解后,进行等价转化,由穿根法求出不等式的解集.
解答 解:由$\frac{3x-4}{{x}^{2}+2x}>\frac{1}{4}$得$\frac{3x-4}{{x}^{2}+2x}-\frac{1}{4}>0$,
化简得$\frac{{x}^{2}-10x+16}{{4(x}^{2}+2x)}<0$,即$\frac{(x-2)(x-8)}{4x(x+2)}<0$,
等价于(x-2)(x-8)x(x+2)<0,如图所示:![]()
由图可得,不等式的解集是(-2,0)∪(2,8),
∴不等式所有解集区间的长度和是2+6=8,
故答案为:8.
点评 本题考查分式不等式的化简、及等价转化,以及穿根法的应用,考查转化思想,数形结合思想,化简、变形能力.
科目:高中数学 来源: 题型:选择题
| A. | $2\sqrt{5}$ | B. | $\sqrt{2}$ | C. | $\sqrt{5}$ | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ${log_{\frac{1}{3}}}5$ | B. | 5 | C. | -5 | D. | ${({\frac{1}{3}})^5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $16\sqrt{3}$ | B. | $\frac{{16\sqrt{3}}}{3}$ | C. | $9\sqrt{3}$ | D. | $3\sqrt{3}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com