精英家教网 > 高中数学 > 题目详情

已知曲线C:ρsin(θ+)=,曲线P:ρ2-4ρcosθ+3=0,
(1)求曲线C,P的直角坐标方程.
(2)设曲线C和曲线P的交点为A,B,求|AB|.

(1) x2+y2-4x+3=0   (2)

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知曲线为参数),曲线,将的横坐标伸长为原来的2倍,纵坐标缩短为原来的得到曲线.
(1)求曲线的普通方程,曲线的直角坐标方程;
(2)若点P为曲线上的任意一点,Q为曲线上的任意一点,求线段的最小值,并求此时的P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在平面直角坐标系中,已知直线的参数方程是(为参数);以为极点,轴正半轴为极轴的极坐标系中,圆的极坐标方程为.
(1)写出直线的普通方程与圆的直角坐标方程;
(2)由直线上的点向圆引切线,求切线长的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知曲线C的极坐标方程为ρ2=,以极点为原点,极轴所在直线为x轴建立平面直角坐标系.
(1)求曲线C的直角坐标方程及参数方程.
(2)若P(x,y)是曲线C上的一个动点,求x+2y的最小值,并求P点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在直角坐标系xoy中,曲线C1的参数方程为(t为参数),P为C1上的动点,Q为线段OP的中点.
(1)求点Q的轨迹C2的方程;
(2)在以O为极点,x轴的正半轴为极轴(两坐标系取相同的长度单位)的极坐标系中,N为曲线p=2sinθ上的动点,M为C2与x轴的交点,求|MN|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在直角坐标系xOy中,以O为极点,x轴非负半轴为极轴建立极坐标系,曲线C的极坐标方程为ρcos(θ-)=1,M,N分别为C与x轴,y轴的交点.
(1)写出C的直角坐标方程,并求M,N的极坐标.
(2)设MN的中点为P,求直线OP的极坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知曲线C的极坐标方程为ρ=4cos θ,以极点为原点,极轴为x轴正半轴建立平面直角坐标系,设直线l的参数方程为 (t为参数).
(1)求曲线C的直角坐标方程与直线l的普通方程;
(2)设曲线C与直线l相交于PQ两点,以PQ为一条边作曲线C的内接矩形,求该矩形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知直线的参数方程为(t为参数),曲线C的参数方程为
为参数).
(1)已知在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,点P的极坐标为,判断点P与直线的位置关系;
(2)设点Q是曲线C上的一个动点,求点Q到直线的距离的最小值与最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知在直角坐标系中,曲线的参数方程为为非零常数,为参数),在极坐标系(与直角坐标系取相同的长度单位,且以原点为极点,以轴正半轴为极轴)中,直线的方程为.
(Ⅰ)求曲线的普通方程并说明曲线的形状;
(Ⅱ)是否存在实数,使得直线与曲线有两个不同的公共点,且(其中为坐标原点)?若存在,请求出;否则,请说明理由.

查看答案和解析>>

同步练习册答案