【题目】某企业生产的某种产品被检测出其中一项质量指标存在问题.该企业为了检查生产该产品的甲、乙两条流水线的生产情况,随机地从这两条流水线上生产的大量产品中各抽取50件产品作为样本,测出它们的这一项质量指标值.若该项质量指标值落在(195,210]内,则为合格品,否则为不合格品.表1是甲流水线样本的频数分布表,图1是乙流水线样本的频率分布直方图
图1:乙流水线样本频率分布直方图
![]()
表1:甲流水线样本频数分布表
质量指标值 | 频数 |
(190,195] | 9 |
(195,200] | 10 |
(200,205] | 17 |
(205,210] | 8 |
(210,215] | 6 |
(1)根据图1,估计乙流水线生产产品该质量指标值的中位数和平均数(估算平均数时,同一组中的数据用该组区间的中点值为代表);
(2)若将频率视为概率,某个月内甲、乙两条流水线均生产了5000件产品,则甲,乙两条流水线分别生产出的不合格品约多少件?
【答案】(1)中位数
,平均数204.5 (2)1500,1000
【解析】
(1)根据中位数定义列式求解,再根据组中值求平均数;
(2)先根据古典概型概率分别求甲、乙不合格品概率,再根据概率估计不合格品件数.
解:(1)设乙流水线生产产品的该项质量指标值的中位数为x,
因为0.48=(0.012+0.032+0.052)×5<0.5<(0.012+0.032+0.052+0.076)×5=0.86,
则(0.012+0.032+0.052)×5+0.076×(x-205)=0.5,解得x=
.
平均数估计为:0.012×5×192.5+0.032×5×197.5+0.052×5×202.5+0.076×5×207.5+0.028×5×212.5=204.5
(2)由甲、乙两条流水线各抽取的50件产品可得,甲流水线生产的不合格品有15件,
则甲流水线生产的产品为不合格品的概率为 P甲=
=
,
乙流水线生产的产品为不合格品的概率为 P乙=(0.012+0.028)×5=
,
于是,若某个月内甲、乙两条流水线均生产了5000件产品,则甲、乙两条流水线生产的不合格品件数分别约为:5000×
=1500,5000×
=1000.
科目:高中数学 来源: 题型:
【题目】已知椭圆
(
)的离心率为
,且经过点
.
(1)求椭圆
的方程;
(2)过点
作直线
与椭圆
交于不同的两点
,
,试问在
轴上是否存在定点
使得直线
与直线
恰关于
轴对称?若存在,求出点
的坐标;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知双曲线
的焦点是椭圆
:
(
)的顶点,且椭圆与双曲线的离心率互为倒数.
(Ⅰ)求椭圆
的方程;
(Ⅱ)设动点
,
在椭圆
上,且
,记直线
在
轴上的截距为
,求
的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点
在椭圆
上,
为坐标原点,直线
的斜率与直线
的斜率乘积为
.
(1)求椭圆
的方程;
(2)不经过点
的直线
(
且
)与椭圆
交于
,
两点,
关于原点的对称点为
(与点
不重合),直线
,
与
轴分别交于两点
,
,求证:
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的左、右两个顶点分别为
、
,曲线
是以
、
两点为顶点,焦距为
的双曲线,设点
在第一象限且在曲线
上,直线
与椭圆相交于另一点
.
(1)求曲线
的方程;
(2)设
、
两点的横坐标分别为
、
,求证
为一定值;
(3)设△
与△
(其中
为坐标原点)的面积分别为
与
,且
,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2019年,我国施行个人所得税专项附加扣除办法,涉及子女教育、继续教育、大病医疗、住房贷款利息或者住房租金、赡养老人等六项专项附加扣除.某单位老、中、青员工分别有
人,现采用分层抽样的方法,从该单位上述员工中抽取
人调查专项附加扣除的享受情况.
(Ⅰ)应从老、中、青员工中分别抽取多少人?
(Ⅱ)抽取的25人中,享受至少两项专项附加扣除的员工有6人,分别记为
.享受情况如右表,其中“
”表示享受,“×”表示不享受.现从这6人中随机抽取2人接受采访.
员工 项目 | A | B | C | D | E | F |
子女教育 | ○ | ○ | × | ○ | × | ○ |
继续教育 | × | × | ○ | × | ○ | ○ |
大病医疗 | × | × | × | ○ | × | × |
住房贷款利息 | ○ | ○ | × | × | ○ | ○ |
住房租金 | × | × | ○ | × | × | × |
赡养老人 | ○ | ○ | × | × | × | ○ |
(i)试用所给字母列举出所有可能的抽取结果;
(ii)设
为事件“抽取的2人享受的专项附加扣除至少有一项相同”,求事件
发生的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com