【题目】设
,
(1)当
时,求
在
上的最大值和最小值;
(2)当
时,过点
作函数
的图象的切线,求切线方程.
【答案】(1)2,-1;(2)
或![]()
【解析】
(1)将a=1代入f(x)中,求导后判断f(x)在[-1,2]上的单调性,进一步求出f(x)的最值;
(2)设过P(0,1)的切线在
上的切点为Q(m,n),然后根据斜率和切点分别建立关于m,n的方程,解方程得到Q的坐标,再求出切线方程即可.
解:(1)当a=1时,
,则
,
令
,则
或
,
因为
,所以当
或
时,
,此时f(x)单调递增;
当
时,
,此时f(x)单调递减,
又
,
,
,![]()
所以
,
.
所以
在
上的最大值和最小值分别为2和-1.
(2)当a=0时,
,因为
,所以点P(0,1)不在函数
上.
设过P(0,1)的切线在
上的切点为Q(m,n),
则切线的斜率
①,
又点Q(m,n)在
上,所以
②,
由①②得
或
,所以Q(1,-2)或Q(-1,0),
所以切线方程为
或
.
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,对于点
、直线
,我们称
为点
到直线
的方向距离.
(1)设双曲线
上的任意一点
到直线
,
的方向距离分别为
,求
的值;
(2)设点
、到直线
的方向距离分别为
,试问是否存在实数
,对任意的
都有
成立?说明理由;
(3)已知直线
和椭圆
,设椭圆
的两个焦点
到直线
的方向距离分别为
满足
,且直线
与
轴的交点为
、与
轴的交点为
,试比较
的长与
的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】[选修4-4:坐标系与参数方程]
在直角坐标系中,以原点为极点,
轴的正半轴为极轴建立极坐标系,已知曲线
:
,过点
的直线
的参数方程为:
(
为参数),直线
与曲线
分别交于
、
两点.
(1)写出曲线
的直角坐标方程和直线
的普通方程;
(2)求线段
的长和
的积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C:
的离心率
,连接椭圆的四个顶点得到的菱形的面积为
.
![]()
求椭圆C的方程;
如图所示,该椭圆C的左、右焦点
,
作两条平行的直线分别交椭圆于A,B,C,D四个点,试求平行四边形ABCD面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】我国是世界上严重缺水的国家,某市为了制定合理的节水方案,对居民用水情况进行调查,通过抽样,获得某年100为居民每人的月均用水量(单位:吨),将数据按照
分成9组,制成了如图所示的频率分布直方图.
(1)求直方图的
的值;
(2)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,说明理由.
(3)估计居民月用水量的中位数.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】天坛公园是明、清两代皇帝“祭天”“祈谷”的场所.天坛公园中的圜丘台共有三层(如图1所示),上层坛的中心是一块呈圆形的大理石板,从中心向外围以扇面形石(如图2所示).上层坛从第一环至第九环共有九环,中层坛从第十环至第十八环共有九环,下层坛从第十九环至第二十七环共有九环;第一环的扇面形石有9块,从第二环起,每环的扇面形石块数比前一环多9块,则第二十七环的扇面形石块数是______;上、中、下三层坛所有的扇面形石块数是_______.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=(x2﹣a)ex(a∈R).
(1)若函数f(x)有两个不同的极值点,求实数a的取值范围;
(2)当a=0时,若关于x的方程f(x)=m存在三个不同的实数根,求实数m的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com