精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆C的离心率,连接椭圆的四个顶点得到的菱形的面积为

求椭圆C的方程;

如图所示,该椭圆C的左、右焦点作两条平行的直线分别交椭圆于ABCD四个点,试求平行四边形ABCD面积的最大值.

【答案】(1)(2) 最大值为

【解析】

由题意离心率可得,再结合面积求解ab的值,则椭圆方程可求;

知,,且直线AB的斜率不为0,设直线AB的方程为,联立直线方程与椭圆方程,把平行四边形ABCD的面积用三角形OAB的面积表示,然后利用换元法结合单调性求最值.

解:由题意,,则,即

椭圆C的方程为

知,,且直线AB的斜率不为0

设直线AB的方程为

联立,消去x得:

四边形是平行四边形,根据对称性可知关于点对称,

,则

,且函数上单调递增,

,即时,平行四边形ABCD面积的最大值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某厂使用两种零件装配两种产品,该厂的生产能力是月产产品最多有2500件,月产产品最多有1200件;而且组装一件产品要42,组装一件产品要68,该厂在某个月能用的零件最多14000个;零件最多12000.已知产品每件利润1000元,产品每件2000元,欲使月利润最大,需要组装产品各多少件?最大利润多少万元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)求函数的单调区间及极值;

(2)时,存在,使方程成立,求实数的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点,直线及圆.

1)求过点的圆的切线方程.

2)若直线与圆相切,求的值.

3)若直线与圆相交于两点,且弦的长为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】,

(1)当时,求上的最大值和最小值;

(2)当时,过点作函数的图象的切线,求切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修4-4:坐标系与参数方程]

在直角坐标系中,以原点为极点,轴的正半轴为极轴建立极坐标系,已知曲线,过点的直线的参数方程为:为参数),直线与曲线分别交于两点.

(1)写出曲线的直角坐标方程和直线的普通方程;

(2)求线段的长和的积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费对年销售量(单位:t)的影响.该公司对近5年的年宣传费和年销售量数据进行了研究,发现年宣传费x(万元)和年销售量y(单位:t)具有线性相关关系,并对数据作了初步处理,得到下面的一些统计量的值.

(1)根据表中数据建立年销售量y关于年宣传费x的回归方程;

(2)已知这种产品的年利润zxy的关系为,根据(1)中的结果回答下列问题:

①当年宣传费为10万元时,年销售量及年利润的预报值是多少?

②估算该公司应该投入多少宣传费,才能使得年利润与年宣传费的比值最大.

附:回归方程中的斜率和截距的最小二乘估计公式分别为

参考数据:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数fx)=lg(﹣x2+5x6)的定义域为A,函数gxx∈(0m)的值域为B

1)当m2时,求AB

2)若xAxB的必要不充分条件,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fxx2xlnxgx)=(mxlnx+1mxm0).

1)讨论函数fx)的单调性;

2)求函数Fx)=fx)﹣gx)在区间[1+∞)上的最小值.

查看答案和解析>>

同步练习册答案