精英家教网 > 高中数学 > 题目详情

如图,在四棱锥P-ABCD中,底面为直角梯形,AD∥BC,∠BAD=90°,PA⊥底面ABCD,PA=AD=AB=2BC,M,N分别为PC,PB的中点.
(Ⅰ)求证:PB⊥DM;
(Ⅱ)求CD与平面ADMN所成的角的正弦值.

(本题满分13分)
解:(Ⅰ)解法1:∵N是PB的中点,PA=AB,∴AN⊥PB.
∵PA⊥平面ABCD,所以AD⊥PA.
又AD⊥AB,PA∩AB=A,∴AD⊥平面PAB,AD⊥PB.
又AD∩AN=A,∴PB⊥平面ADMN.
∵DM?平面ADMN,∴PB⊥DM. …(6分)
解法2:如图,以A为坐标原点建立空间直角坐标系A-xyz,设BC=1,
可得,A(0,0,0),P(0,0,2),B(2,0,0),C(2,1,0),,D(0,2,0).
因为 ,所以PB⊥DM. …(6分)

(Ⅱ)解法1:取AD中点Q,连接BQ和NQ,则BQ∥DC,又PB⊥平面ADMN,∴CD与平面ADMN所成的角为∠BQN.
设BC=1,在Rt△BQN中,则,故
所以CD与平面ADMN所成的角的正弦值为. …(13分)
解法2:因为
所以 PB⊥AD,又PB⊥DM,所以PB⊥平面ADMN,
因此的余角即是CD与平面ADMN所成的角.
因为
所以CD与平面ADMN所成的角的正弦值为. …(13分)
分析:(Ⅰ)解法1 先由AD⊥PA.AD⊥AB,证出AD⊥平面PAB得出AD⊥PB.又N是PB的中点,PA=AB,得出AN⊥PB.证出PB⊥平面ADMN后,即可证出PB⊥DM.
解法2:如图,以A为坐标原点建立空间直角坐标系A-xyz,设BC=1,通过证明证出PB⊥DM
(Ⅱ)解法1:取AD中点Q,连接BQ和NQ,则BQ∥DC,又PB⊥平面ADMN,所以CD与平面ADMN所成的角为∠BQN.在Rt△BQN中求解即可.
解法2,通过 PB⊥平面ADMN,可知 是平面ADMN 的一个法向量,的余角即是CD与平面ADMN所成的角.
点评:本题主要考查空间角,距离的计算,线面垂直,面面垂直的定义,性质、判定,考查了空间想象能力、计算能力,分析解决问题能力.空间问题平面化是解决空间几何体问题最主要的思想方法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在四棱锥P-ABCD中,底面ABCD是矩形.已知AB=3,AD=2,PA=2,PD=2
2
,∠PAB=60°.
(1)证明AD⊥PB;
(2)求二面角P-BD-A的正切值大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,PA⊥平面ABCD,四边形ABCD为正方形,AB=4,PA=3,点A在PD上的射影为点G,点E在AB上,平面PEC⊥平面PDC.
(1)求证:AG∥平面PEC;
(2)求AE的长;
(3)求二面角E-PC-A的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,PA⊥底面ABCD,∠BCD=120°,BC⊥AB,CD⊥AD,BC=CD=PA=a,
(Ⅰ)求证:平面PBD⊥平面PAC.
(Ⅱ)求四棱锥P-ABCD的体积V.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,底面是边长为a的菱形,∠ABC=60°PD⊥面ABCD,PC=a,E为PB中点
(1)求证;平面ACE⊥面ABCD;
(2)求三棱锥P-EDC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•武汉模拟)如图,在四棱锥P-ABCD中,底面ABCD是直角梯形,BC∥AD,且∠BAD=90°,又PA⊥底面ABCD,BC=AB=PA=1,AD=2.
(1)求二面角P-CD-A的平面角正切值,
(2)求A到面PCD的距离.

查看答案和解析>>

同步练习册答案