精英家教网 > 高中数学 > 题目详情
16.已知函数y=f(x)=$\left\{\begin{array}{l}{2\sqrt{x},0≤x≤1}\\{1+x,x>1}\end{array}\right.$,求f($\frac{1}{2}$)及f($\frac{1}{t}$),并写出定义域及值域.

分析 代值计算可得f($\frac{1}{2}$),分类讨论可得f($\frac{1}{t}$),易得函数的定义域,分别求值域取并集可得函数的值域.

解答 解:∵函数y=f(x)=$\left\{\begin{array}{l}{2\sqrt{x},0≤x≤1}\\{1+x,x>1}\end{array}\right.$,
∴f($\frac{1}{2}$)=2$\sqrt{\frac{1}{2}}$=$\sqrt{2}$,
当0<$\frac{1}{t}$≤1即t≥1时,f($\frac{1}{t}$)=2$\sqrt{\frac{1}{t}}$=$\frac{2\sqrt{t}}{t}$;
当$\frac{1}{t}$>1即0<t<1时,f($\frac{1}{t}$)=1+$\frac{1}{t}$.
函数的定义域为[0,+∞),
∵当0≤x≤1时,y=2$\sqrt{x}$∈[0,2];
当x>1时,y=1+x>2
∴函数的值域为[0,+∞)

点评 本题考查分段函数的值域,涉及分类讨论的思想,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.若实数x,y,m满足|x-m|<|y-m|,则称x比y接近m.
(1)若4比x2-3x接近0,求x的取值范围;
(2)对于任意的两个不等正数a,b,求证:a+b比$\frac{b^2}{a}+\frac{a^2}{b}$接近$2\sqrt{ab}$;
(3)若对于任意的非零实数x,实数a比$x+\frac{4}{x}$接近-1,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知x+y=1,x4+y4的最小值是$\frac{1}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知F为抛物线y2=4x的焦点,△ABC的三个顶点都在抛物线上,且$\overrightarrow{FA}$+$\overrightarrow{FB}$+$\overrightarrow{FC}$=$\overrightarrow{0}$.
(1)求|$\overrightarrow{FA}$|+|$\overrightarrow{FB}$|+|$\overrightarrow{FC}$|的值;
(2)设O是坐标原点,记△OFA、△OFB、△OFC的面积分别为S1、S2、S3,判断S1+S2+S3有无最大值,若有,求出最大值;若没有,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若sinθcosθ<0,则角θ的终边在第二或四象限.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.解方程:A${\;}_{2x+1}^{4}$=140A${\;}_{x}^{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.画出函数y=$\left\{\begin{array}{l}{lg(x+1),x>-1}\\{lg\frac{1}{-x-1},x<-1}\end{array}\right.$的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.△ABC中,内角A,B,C所对的边分别为a,b,c,且满足a2+c2-b2=$\sqrt{2}$ac.
(1)求角B的大小;
(2)若A=75°,b=2,求边a的长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知tanα=2,则$\frac{tan2α}{si{n}^{2}α+4co{s}^{2}α}$=-$\frac{5}{6}$.

查看答案和解析>>

同步练习册答案