精英家教网 > 高中数学 > 题目详情

【题目】设m,n∈R,定义在区间[m,n]上的函数f(x)=log2(4﹣|x|)的值域是[0,2],若关于t的方程( |t|+m+1=0(t∈R)有实数解,则m+n的取值范围是

【答案】[1,2)
【解析】解:∵函数f(x)=log2(4﹣|x|)的值域是[0,2],
∴1≤4﹣|x|≤4,
∴0≤|x|≤3,
∴m=﹣3,0≤n≤3,或﹣3≤m≤0,n=3;
又∵关于t的方程( |t|+m+1=0(t∈R)有实数解,
∴m=﹣(( |t|+1),
∵1<( |t|+m+1≤2,
∴﹣2≤m<﹣1,
则n=3,
则1≤m+n<2,
即答案为:[1,2).
由函数f(x)=log2(4﹣|x|)的值域是[0,2],可解得m=﹣3,0≤n≤3,或﹣3≤m≤0,n=3;又由关于t的方程( |t|+m+1=0(t∈R)有实数解可解得﹣2≤m<﹣1,则n=3,从而求m+n的取值范围.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图1,在直角梯形ABCD中,∠ADC=90°,CD∥AB,AB=4,AD=CD=2.将△ADC沿AC折起,使平面ADC⊥平面ABC,得到几何体D﹣ABC,如图2所示.

(1)求证:BC⊥平面ACD;
(2)求几何体D﹣ABC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在多面体中,四边形均为正方形, 平面 平面,且.

(1)求证: 平面

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】直三棱柱ABC﹣A1B1C1中,AB⊥AC,AB=2,AC=4,AA1=2,D为BC的中点.则直线DB1与平面A1C1D所成角的正弦值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,AD∥BC,AB⊥AD,BC= ,AB=1,BD=PA=2,M 为PD的中点.

(1)求异面直线BD与PC所成角的余弦值;
(2)求二面角A﹣MC﹣D的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知复数z1满足(z1﹣2)(1+i)=1﹣i(i为虚数单位),复数z2的虚部为2,且z1z2是实数,
(1)求z1
(2)求z2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如下:

总计

需要帮助

40

m

70

不需要帮助

n

270

s

总计

200

t

500


(1)求m,n,s,t的值;
(2)估计该地区老年人中,需要志愿者提供帮助的比例;
(3)能否有99%的把握认为该地区的老年人是否需要志愿者帮助与性别有关.
参考公式:
随机变量K2= ,n=a+b+c+d
在2×2列联表:

y1

y2

总计

x1

a

b

a+b

x2

c

d

c+d

总计

a+c

b+d

a+b+c+d

P(K2≥k0

0.10

0.05

0.025

0.010

0.005

0.001

k0

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】的内角的对边分别为,已知

(1)

(2),求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某班级体育课举行了一次“投篮比赛”活动,为了了解本次投篮比赛学生总体情况,从中抽取了甲乙两个小组样本分数的茎叶图如图所示.

(1)分别求出甲乙两个小组成绩的平均数与方差,并判断哪一个小组的成绩更稳定:

(2)从甲组成绩不低于60分的同学中,任意抽取3名同学,设表示所抽取的3名同学中得分在的学生个数,求的分布列及其数学期望.

查看答案和解析>>

同步练习册答案