精英家教网 > 高中数学 > 题目详情
F1、F2是椭圆C1
x2
a2
+
y2
b2
=1(a>b>0)的两焦点,过点F2作AB⊥x轴交椭圆于A、B两点,若△F1AB为等腰直角三角形,且∠AF1B=90°,则椭圆的离心率是
 
考点:椭圆的简单性质
专题:计算题,圆锥曲线的定义、性质与方程
分析:由于AF2⊥x轴,可得AA(c,
b2
a
)..由于△F1AB为等腰直角三角形,可得|F1F2|=|AF2|,于是2c=
b2
a
,再利用b2=a2-c2,即可得出椭圆的离心率.
解答: 解:∵AF2⊥x轴,∴A(c,
b2
a
).
∵△F1AB为等腰直角三角形,∴|F1F2|=|AF2|,
∴2c=
b2
a
,∴2ac=b2=a2-c2
∴2e=1-e2
化为e2+2e-1=0,(e>0).
解得e=
2
-1.
故答案为:
2
-1.
点评:本题考查了椭圆的坐标方程及其性质、等腰直角三角形等基础知识与基本技能方法,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=ex-ax2+bx+c(a,b,c∈R,e=2.718…是自然对数的底数),曲线y=f(x)在点(0,f(0))处的切线方程为y=x+1.
(Ⅰ)求b与c的值;
(Ⅱ)当a>0时,若方程f(x)=0在(0,+∞)有唯一的实数解,求a的值;
(Ⅲ)当a=2时,证明:函数f(x)在[0,3]上有且仅有两个极值点,并求f(x)在[0,3]是的最大值.
(参考数据:e2≈7.39,e3≈20.09,e4≈54.60)

查看答案和解析>>

科目:高中数学 来源: 题型:

过点A(2,3)且平行于直线2x+y-5=0的直线方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图平行四边形ABCD中,E是BC的中点,F是AE的中点,若
AB
=
a
AD
=
b
,则
AF
=
 
.(用
a
b
表示)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知非负实数x,y满足2x+3y-8≤0且3x+2y-7≤0,则x+y的最大值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知抛物线y2=2px的焦点F与双曲线
x2
3
-y2=1的右焦点重合,过抛物线焦点F的直线交该抛物线于A,B两点,|AF|=3,则p=
 
;直线AB斜率等于
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=
3
sinωxcosωx+cos2ωx-
1
2
(ω>0),其最小正周期为
π
2
,则ω=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知长方体的相邻三个侧面面积分别为
2
3
6
,则它的体积是(  )
A、
5
B、
6
C、5
D、6

查看答案和解析>>

科目:高中数学 来源: 题型:

在下列四个选项中,p是q的必要不充分条件是(  )
A、p:a>b,q:a2>b2
B、p:a>b,q:2a>2b
C、p:α=
π
4
,q:tanα=1
D、p:x2>4,q:x>3

查看答案和解析>>

同步练习册答案