如图①所示,在Rt△ABC中,AC=6,BC=3,∠ABC=90°,CD为∠ACB的平分线,点E在线段AC上,CE=4.如图②所示,将△BCD沿CD折起,使得平面BCD⊥平面ACD,连结AB,设点F是AB的中点.
图①图②
(1)求证:DE⊥平面BCD;
(2)若EF∥平面BDG,其中G为直线AC与平面BDG的交点,求三棱锥B-DEG的体积.
(1)见解析(2)
【解析】(1)证明:在题图①中,
∵AC=6,BC=3,∠ABC=90°,∴∠ACB=60°.
∵CD为∠ACB的平分线,
∴∠BCD=∠ACD=30°.∴CD=2.
∵CE=4,∠DCE=30°,∴DE=2.
则CD2+DE2=EC2.∴∠CDE=90°.DE⊥DC.
在题图②中,∵平面BCD⊥平面ACD,平面BCD∩平面ACD=CD,DE?平面ACD,∴DE⊥平面BCD.
(2)【解析】
在题图②中,∵EF∥平面BDG,EF平面ABC,平面ABC∩平面BDG=BG,∴EF∥BG.
∵点E在线段AC上,CE=4,点F是AB的中点,
∴AE=EG=CG=2.
作BH⊥CD交于H.∵平面BCD⊥平面ACD,
∴BH⊥平面ACD.由条件得BH=.S△DEG=S△ACD=×AC·CD·sin30°=.
三棱锥B-DEG的体积V=S△DEG·BH=××=
科目:高中数学 来源:2013-2014学年高考数学总复习考点引领+技巧点拨第六章第2课时练习卷(解析版) 题型:填空题
设不等式组表示的平面区域为D,若指数函数y=ax的图象存在区域D上的点,则a的取值范围是________.
查看答案和解析>>
科目:高中数学 来源:2013-2014学年高考数学总复习考点引领+技巧点拨第八章第6课时练习卷(解析版) 题型:解答题
在三棱锥SABC中,底面是边长为2的正三角形,点S在底面ABC上的射影O恰是AC的中点,侧棱SB和底面成45°角.
(1)若D为侧棱SB上一点,当为何值时,CD⊥AB;
(2)求二面角S-BC-A的余弦值大小.
查看答案和解析>>
科目:高中数学 来源:2013-2014学年高考数学总复习考点引领+技巧点拨第八章第5课时练习卷(解析版) 题型:解答题
如图,在四边形ABCD中,∠DAB=90°,∠ADC=135°,AB=5,CD=2,AD=2,求四边形ABCD绕AD旋转一周所成几何体的表面积及体积.
查看答案和解析>>
科目:高中数学 来源:2013-2014学年高考数学总复习考点引领+技巧点拨第八章第5课时练习卷(解析版) 题型:填空题
如图,已知正三棱柱ABCA1B1C1的底面边长为2cm,高为5cm,则一质点自点A出发,沿着三棱柱的侧面绕行两周到达点A1的最短路线的长为________cm.
查看答案和解析>>
科目:高中数学 来源:2013-2014学年高考数学总复习考点引领+技巧点拨第八章第5课时练习卷(解析版) 题型:填空题
已知圆锥的侧面展开图是一个半径为3cm,圆心角为的扇形,则此圆锥的高为________cm.
查看答案和解析>>
科目:高中数学 来源:2013-2014学年高考数学总复习考点引领+技巧点拨第八章第4课时练习卷(解析版) 题型:解答题
如图,在直四棱柱ABCDA1B1C1D1中,底面ABCD为等腰梯形,AB∥CD,且AB=2CD,在棱AB上是否存在一点F,使平面C1CF∥平面ADD1A1?若存在,求点F的位置;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源:2013-2014学年高考数学总复习考点引领+技巧点拨第八章第3课时练习卷(解析版) 题型:解答题
如图,在三棱锥P-ABC中,△PAC,△ABC分别是以A、B为直角顶点的等腰直角三角形,AB=1.现给出三个条件:①PB=;②PB⊥BC;③平面PAB⊥平面ABC.试从中任意选取一个作为已知条件,并证明:PA⊥平面ABC;
查看答案和解析>>
科目:高中数学 来源:2013-2014学年高考数学总复习考点引领+技巧点拨第八章第1课时练习卷(解析版) 题型:填空题
如图是正四面体的平面展开图,G,H,M,N分别为DE,BE,EF,EC的中点,在这个正四面体中:
①GH与EF平行;
②BD与MN为异面直线;
③GH与MN成60°角;
④DE与MN垂直.
以上四个命题中,正确命题的是________.(填序号)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com