精英家教网 > 高中数学 > 题目详情
已知logab=logba,(a>0,b>0且a≠1,b≠1),求证:a=b或a=
1
b
考点:对数的运算性质
专题:证明题
分析:先利用换底公式化成
lgb
lga
=
lga
lgb
,因此得(lga)2=(lgb)2,即lga=lgb或lga=-lgb,从而根据对数的运算性质可证得a=b或a=
1
b
解答: 解:∵logab=logba
∴由换底公式得:
lgb
lga
=
lga
lgb

即(lga)2=(lgb)2
∴lga=lgb或lga=-lgb,
由对数的运算性质得:a=b或a=
1
b
点评:本题考查了对数的运算性质,解题的关键是利用换底公式进行转化.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

下列全称命题的否定形式中,假命题的个数是(  )
(1)所有能被3整除的数能被6整除    
(2)所有实数的绝对值是正数
(3)?x∈Z,x2的个位数不是2.
A、0B、1C、2D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+2(a-2)x+4,当x∈[-3,1]时,f(x)>0恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=x3+x+
a
x
-8在[m,n]上有最大值10,则f(x)在[-n,-m]上有最大(最小)值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数y=3cos(ωx+φ)(ω>0)的两条相邻对称轴的距离为
π
2
,且图象关于点(
3
,0)中心对称,那么|φ|的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

定义:若
h(x)
xk
在[k,+∞)上为增函数,则称h(x)为“k次比增函数”,其中k∈N*,已知f(x)=x3+2ax2+ax,g(x)=ex-ax.
(Ⅰ)若f(x)是“1次比增函数”,又是“2次比增函数”,求实数a的取值范围;
(Ⅱ)当a=1时,求函数g(x)在[m-1,m](m>0)上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)在R上是增函数,x∈[1,+∞),若f(-x2+ax)<f(x+4),求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-
2
2x+1

(Ⅰ)若函数f(x)为奇函数,求a的值;
(Ⅱ)若a=2,则是否存在实数m,n(m<n<0),使得函数f(x)的定义域和值域都为[m,n]?若存在,求出m,n的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点P(2,2),圆C:x2+y2-8y=0,过点P的动直线l与圆C交于A、B两点,线段AB的中点为M,O为坐标原点.
(Ⅰ)求M的轨迹方程;
(Ⅱ)当|OP|=|OM|时,求l的方程及△POM的面积.

查看答案和解析>>

同步练习册答案