精英家教网 > 高中数学 > 题目详情
定义:若
h(x)
xk
在[k,+∞)上为增函数,则称h(x)为“k次比增函数”,其中k∈N*,已知f(x)=x3+2ax2+ax,g(x)=ex-ax.
(Ⅰ)若f(x)是“1次比增函数”,又是“2次比增函数”,求实数a的取值范围;
(Ⅱ)当a=1时,求函数g(x)在[m-1,m](m>0)上的最小值.
考点:利用导数研究函数的单调性
专题:探究型,导数的综合应用
分析:(1)应用条件f(x)是“1次比增函数”,又是“2次比增函数”,得出函数的单调性,再用导数推理,
(2)先探讨函数g(x)的单调性,再对m进行分类讨论.
解答: 解:(1)∵f(x)是“1次比增函数”,
f(x)
x
=x2+2ax+a在[1,+∞)上为增函数,
∴-a≤1,∴a≥-1,
∵f(x)是“2次比增函数”,则
f(x)
x2
=x+
a
x
+2a在[2,+∞)为增函数,
则(x+
a
x
+2a)′=1-
a
x2
≥0在[2,+∞)恒成立,
∴a≤x2在[2,+∞)恒成立,∴a≤4,
综上a的取值范围为[-1,4].
(2)当a=1时,函数g(x)=ex-x
g′(x)=ex-1,
由g′(x)>0,得x>0;由g′(x)<0,得x<0,
∴g(x)在(-∞,0)单调递减,在(0,+∞)单调递增,
①当m-1<0<m,即0<m<1时,g(x)在[m-1,0]上单调递减,在[0,m]上单调递增,
∴g(x)min=g(0)=1,
②当m-1≥0,即m≥0时,g(x)在[m-1,m]上单调递增,
∴g(x)min=g(m-1)=em-1-m+1.
综上,当m-1<0<m,g(x)min=1,
当m≥0时,∴g(x)min=g(m-1)=em-1-m+1.
点评:本题主要考查函数与导数的关系,且此题也是一个创新题,读懂题目中的概念是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若(
2
2
+x)2n=a0+a1x+…+a2nx2n,则
lim
n→∞
[(a0+a2+…+a2n2}-(a1+a3+…+a2n-12]=(  )
A、1
B、
2
2
C、0
D、-1

查看答案和解析>>

科目:高中数学 来源: 题型:

从四面体的顶点和各棱中点共10个点中任取5个点,则所取5个点可以构成四棱锥的概率是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+ln(x+m)与函数g(x)=x2+ex-
1
2
(x<0)的图象上存在关于y轴对称的点(e为自然对数的底数),则m的取值范围是(  )
A、(-∞,
e
B、(-∞,
1
e
C、(-
1
e
e
D、(-
e
1
e

查看答案和解析>>

科目:高中数学 来源: 题型:

已知logab=logba,(a>0,b>0且a≠1,b≠1),求证:a=b或a=
1
b

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=|log2(x+1)|的图象大致是(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中数学 来源: 题型:

下列函数中,表示同一函数的是
 

(1)f(x)=|x|,g(x)=
x2
;      
(2)f(x)=
x2
,g(x)=(
x
)2

(3)f(x)=
x2-1
x-1
,g(x)=x+1;   
(4)f(x)=
x+1
x-1
,g(x)=
x2-1

查看答案和解析>>

科目:高中数学 来源: 题型:

某校友200位教职员工,其每周用于锻炼身体所用时间的频率分布直方图如图所示,据图估计,锻炼时间在[8,10]小时内的人数为(  )
A、76B、82C、88D、95

查看答案和解析>>

科目:高中数学 来源: 题型:

试用单调性的定义讨论函数y=x+
1
x
的单调区间,并画出该函数草图.

查看答案和解析>>

同步练习册答案