精英家教网 > 高中数学 > 题目详情
若(
2
2
+x)2n=a0+a1x+…+a2nx2n,则
lim
n→∞
[(a0+a2+…+a2n2}-(a1+a3+…+a2n-12]=(  )
A、1
B、
2
2
C、0
D、-1
考点:二项式定理的应用
专题:二项式定理
分析:因为求极限的数为二项式展开式的奇数项的系数和的平方与偶数项的系数和的平方的差,故可以赋值x=1代入二项展开式中A=(
2
2
+1)2n=a0+a1+…+a2n;x=-1可得,B=(
2
2
-1)2n=a0-a1+a2-a3+…-a2n-1+a2n,而求极限的数由平方差公式可以知道就是式子A与B的乘积,代入后由平方差公式即可化简为求得答案.
解答: 解:令x=1得,A=(
2
2
+1)2n=a0+a1+…+a2n;x=-1可得,B=(
2
2
-1)2n=a0-a1+a2-a3+…-a2n-1+a2n,
所以(a0+a2+…+a2n2-(a1+a3+…+a2n-12
=(a0+a1+…+a2n)(a0-a1+…-a2n-1
=(
2
2
+1)2n
2
2
-1)2n
=[(
2
2
+1)(
2
2
-1)]2n
=(
1
2
2n=
1
4n

lim
n→∞
[(a0+a2+a4+…+a2n2-(a1+a3+a5…+a2n-12]=
lim
n→∞
1
4n
=0.
故选C.
点评:本题主要考查了二项式定理的应用,主要是二项式系数和差的考查,对于二项式系数的问题常常常用赋值法解决;同时还考查了学生的计算能力与转化能力以及求极限问题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

请您设计一个帐篷,它下部的形状是高为1m的正六棱柱,上部的形状是侧棱长为3m的正六棱锥(如图所示).试问当帐篷的顶点O到底面中心O1的距离为多少时,帐篷的体积为16
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知在直三棱柱ABC-A1B1C1中,∠BAC=90°,AB=AC=
2
,AA1=1,点M,N分别为A1B和B1C1的中点,求三棱锥A1-MNC体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定直线l:x=-1,定点F(1,0),⊙P经过F且与l相切.
(1)求P点的轨迹C的方程.
(2)是否存在定点M,使经过该点的直线与曲线C交于A、B两点,并且以AB为直径的圆都经过原点;若有,请求出M点的坐标;若没有,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

下列全称命题的否定形式中,假命题的个数是(  )
(1)所有能被3整除的数能被6整除    
(2)所有实数的绝对值是正数
(3)?x∈Z,x2的个位数不是2.
A、0B、1C、2D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

我们把在线段上到两端点距离之比为
5
-1
2
≈0.618的点称为黄金分割点.类似地,在解析几何中,我们称离心率为
5
-1
2
的椭圆为黄金椭圆,已知椭圆
x2
a2
+
y2
b2
=1 (a>b>0)的焦距为2c,则下列四个命题:
①a、b、c成等比数列是椭圆为黄金椭圆的充要条件;
②若椭圆是黄金椭圆且F2为右焦点,B为上顶点,A1为左顶点,则
BA1
BF2
=0
③若椭圆是黄金椭圆,直线l过椭圆中心,与椭圆交于点E、F,P为椭圆上任意一点(除顶点外),且PE与PF的斜kPE、kPF存在,则kPE•kPF为定值.
④若椭圆是黄金椭圆,P、Q为椭圆上任意两点,M为PQ中点,且PQ与OM的斜率kPQ与kOM(O为坐标原点)存在,则kPQ•kOM为定值.
⑤椭圆四个顶点构成的菱形的内切圆过椭圆的焦点是椭圆为黄金椭圆的充要条件.
其中正确命题的序号为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x+
a
x
+lnx(a∈R).
(1)求函数f(x)的单调区间;
(2)若函数f(x)在(1,+∞)上单调递增,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义min{a,b}为两数中最小数,若f(x)=min{4x+1,x+2},画出函数f(x)的图象并求出值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义:若
h(x)
xk
在[k,+∞)上为增函数,则称h(x)为“k次比增函数”,其中k∈N*,已知f(x)=x3+2ax2+ax,g(x)=ex-ax.
(Ⅰ)若f(x)是“1次比增函数”,又是“2次比增函数”,求实数a的取值范围;
(Ⅱ)当a=1时,求函数g(x)在[m-1,m](m>0)上的最小值.

查看答案和解析>>

同步练习册答案