精英家教网 > 高中数学 > 题目详情
已知定直线l:x=-1,定点F(1,0),⊙P经过F且与l相切.
(1)求P点的轨迹C的方程.
(2)是否存在定点M,使经过该点的直线与曲线C交于A、B两点,并且以AB为直径的圆都经过原点;若有,请求出M点的坐标;若没有,请说明理由.
考点:直线与圆锥曲线的综合问题
专题:直线与圆
分析:(1)由已知得点P的轨迹C是以F为焦点,l为准线的抛物线,由此能求出点P的轨迹C的方程.
(2)设AB的方程为x=my+n,代入抛物线方程整理,得:y2-4my-4n=0,由此利用韦达定理、直径性质能求出直线AB:x=my+4恒过M(4,0)点.
解答: 解:(1)由题设知点P到点F的距离与点P到直线l的距离相等,
∴点P的轨迹C是以F为焦点,l为准线的抛物线,
∴点P的轨迹C的方程为y2=4x.
(2)设AB的方程为x=my+n,
代入抛物线方程整理,得:
y2-4my-4n=0,
设A(x1,y1),B(x2,y2),则
y1+y2=4m
y1y2=-4n

∵以AB为直径的圆过原点,∴OA⊥OB,
∴y1y2+x1x2=0,∴y1y2+
y12
4
y22
4
=0

∴y1y2=-16,
∴-4n=-16,解得n=4,
∴直线AB:x=my+4恒过M(4,0)点.
点评:本题考查点的轨迹方程的求法,考查满足条件的点的坐标是否存在的判断与求法,解题时要认真审题,注意函数与方程思想的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若集合M={x|y=
1
x
},N={x|y=log2(1-x)},则集合M∩N=(  )
A、(-∞,1)B、(1,+∞)
C、(0,1)D、R

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
-x2-2x,x≤0
log
1
2
(x+1),x>0
,若?x∈R,f(x)≤ax+2(a∈R),则a的最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

某班共有6个数学研究性学习小组,本学期初有其它班的3名同学准备加入到这6个小组中去,则这3名同学恰好有2人安排在同一个小组的概率是(  )
A、
1
5
B、
5
24
C、
10
81
D、
5
12

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点O(0,0)、A(1,2)、B(4,5),向量
OP
=
OA
+t
AB

(Ⅰ)t为何值时,点P在x轴上?
(Ⅱ)t为何值时,点P在第二象限?
(Ⅲ)四边形ABPO能否为平行四边形?若能,求出t的值;若不能,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
2
x2-ax-lnx(x∈R).
(1)若函数f(x)在区间[1,+∞)上单调递增,求实数a的取值范围;
(2)若函数f(x)在区间(1,2)上存在极小值,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

若(
2
2
+x)2n=a0+a1x+…+a2nx2n,则
lim
n→∞
[(a0+a2+…+a2n2}-(a1+a3+…+a2n-12]=(  )
A、1
B、
2
2
C、0
D、-1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)、g(x)在(a,b)上是增函数,且a<g(x)<b,求证:f(g(x))在(a,b)上也是增函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+ln(x+m)与函数g(x)=x2+ex-
1
2
(x<0)的图象上存在关于y轴对称的点(e为自然对数的底数),则m的取值范围是(  )
A、(-∞,
e
B、(-∞,
1
e
C、(-
1
e
e
D、(-
e
1
e

查看答案和解析>>

同步练习册答案